# A static scheduling approach to enable safety-critical OpenMP applications

Alessandra Melani, **Maria A. Serrano**, Marko Bertogna, Isabella Cerutti, Eduardo Quiñones, Giorgio Buttazzo

> ASP-DAC 2017 January 16-19, 2017 Chiba/Tokyo, Japan







UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH





# Motivation

• There is an increasing demand of new safetycritical real-time applications providing high performance

– Timing guarantees are fundamental to be fulfilled





 Performance demands can be satisfied by using advanced parallel architectures (multi/many-core)

# Parallel programing models

- Fundamental for exploiting the performance of multi- and many-cores
  - Provide the level of abstraction to express parallel applications, while hiding processor complexities
  - Mandatory to exploit the massively parallel computation capabilities
- OpenMP is one of the most used in HPC

Increasingly adopted in embedded systems

# OpenMP

- Supported by most of current many-core architectures
- Allows expressing fine-grained and unstructured parallelism
  - Tasks
  - Dependencies



## Time predictable OpenMP

- OpenMP tasking model
  - Task Dependency
     Graph (TDG)

```
#pragma omp task depend(out:a,b) // T<sub>1</sub>
{ ... }
#pragma omp task depend(inout:a) // T<sub>2</sub>
{ ... }
#pragma omp task depend(inout:b) // T<sub>3</sub>
{ ... }
#pragma omp task depend(in:a,b) // T<sub>4</sub>
{ ... }
```

- It resembles the Direct Acyclic Graph (DAG) real-time scheduling model
  - Addresses the time predictability of real-time parallel computation



### **OpenMP for safety-critical systems?**

- Current OpenMP implementations rely on dynamic scheduling approaches
  - Allow schedulability analysis exploiting the workconserving nature of scheduling [1]
  - Less suitable to safety-critical systems timing analysis
- This work provides **OpenMP-compliant static** allocation strategies
  - Allow a tighter timing analysis as it knows where each task executes
  - More suitable to safety-critical systems timing analysis

<sup>[1]</sup> M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna and E. Quiñones, *"Timing characterization of OpenMP4 tasking model"*, in CASES, 2015.







Task-parts  $p_{i,j}$ 

• Represented by their WCET *C*<sub>*i*,*j*</sub>

### **Task Scheduling Points (TSPs)**

• Task may be suspended

```
#pragma omp parallel num threads(N)
#pragma omp single
                                                      // T_{1}
  p<sub>11</sub>
   #pragma omp task depend(out:x)
                                                      // T_{2}
       \mathbf{p}_{21}
  P<sub>12</sub>
                                                      // T_{3}
   #pragma omp task depend(in:x)
       P<sub>31</sub>
  \mathbf{p}_{13}
                                                      // T<sub>4</sub>
   #pragma omp task
       P41
  P<sub>14</sub>
```

From an OpenMP program, an OpenMP-DAG can be derived [2]



9

[2] R. Vargas, E. Quiñones and A. Marongiu. "OpenMP and Timing Predictability: A Possible Union?" In
18th Design, Automation and Test in Europe Conference (DATE), 2015.

| OpenMP4               | DAG-based |  |  |
|-----------------------|-----------|--|--|
| Task parts            | Nodes     |  |  |
| Dependencies and TSPs | Edges     |  |  |

### Task classification that affects the scheduling

- Tied tasks
  - Must only be executed by the thread that started it  $P_{00}(P_{10}, P_{01})$

Thread 1





### Untied tasks

 Can be resumed by any thread after being suspended



## **OpenMP scheduling**

• Dynamic scheduling [1]

– Valid only for untied tasks

$$R^{ub} = len(G) + \frac{1}{m}(vol(G) - len(G)) \le D$$

- Our proposal: Static scheduling
  - Valid for tied and untied tasks
  - Two approaches:
    - Optimal ILP based
    - Sub-optimal Heuristics-based

# **Strategy 1: Optimal static allocation**

- Problem definition: Optimally allocate OpenMP task-parts to threads
  - Determine the minimum time interval needed to execute an OpenMP application on m threads

### Solution

- ILP formulation for tied tasks
- ILP formulation for untied tasks

### • Complexity

- NP-hard
- Number of variables and constrains:  $O(N^2p^2m)$

- Heuristics (priority rules) to solve the makespan minimization problem [3,4]:
  - Longest Processing Time (LPT)
  - Shortest Processing Time (SPT)
  - Largest Number of Successors in the Next Level (LNSNL)
  - Largest Number of Successors (LNS)
  - Largest Remaining Workload (LRW)

<sup>[3]</sup> M. L. Pinedo, *Scheduling: theory, algorithms, and systems*. Springer Science & Business Media, 2012.
[4] K. E. Raheb, C. T. Kiranoudis, P. P. Repoussis, and C. D. Tarantilis, *"Production scheduling with complex precedence constraints in parallel machines"* Computing and Informatics, vol. 24, no. 3, 2012.

### Tied tasks

- Input
  - G: OpenMP DAG
  - m: Num. threads
- Output
  - µ: Makespan
  - $\Psi$ : Task-parts starting times
  - $\Theta$ : Task-to-thread mapping
- A: Allocated task-parts
- R: Ready task-parts
- L[1..m]: Last idle time of each thread
- S[1..m]: Tasks
   suspended on each thread

```
1: procedure HEURTIED(G, m)
 2:
            A \leftarrow \emptyset; R \leftarrow p_{1,1}
 3:
            L \leftarrow \operatorname{ARRAY}(m, 0); S \leftarrow \operatorname{ARRAY}(m, \emptyset)
            while SIZE(A) ! = \sum_{i=1}^{N} n_i do
  4:
  5:
                k \leftarrow \text{FIRSTIDLETHREAD}(L)
                P_{i,i} \leftarrow \text{NEXTREADYJOB}(k, R, S_k, G)
 6:
 7:
                if j == 1 then
 8:
                     \theta_i \leftarrow k
 9:
                     if j != n_i then
10:
                          S_k \leftarrow \operatorname{APPEND}(i, S_k)
11:
                     end if
12:
                else if j == n_i then
13:
                     S_k \leftarrow \text{REMOVE}(i, S_k)
14:
                end if
15:
                \psi_{i,j} = \max(L_{\theta_i}, \psi_{i,j}); L_{\theta_i} \leftarrow \psi_{i,j} + C_{i,j}
16:
                A \leftarrow \text{Append}(P_{i,j}, A); R \leftarrow \text{Remove}(P_{i,j}, R)
17:
                for P_{k,z} \mid (P_{i,j}, P_{k,z}) \in E do
18:
                     if \psi_{k,z} < \psi_{i,j} + C_{i,j} then
19:
                          \psi_{k,z} \leftarrow \psi_{i,j} + C_{i,j};
20:
                     end if
21:
                     F_{k,z} \leftarrow F_{k,z} + 1
22:
                     if F_{k,z} == SIZE(INEDGES_{k,z}) then
23:
                          R \leftarrow \text{APPEND}(P_{k,z}, R)
24:
                     end if
25:
                end for
26:
            end while
           \mu = \max_{i=1}^{m} L_i
27:
28:
            return (\mu, \psi, \theta)
29: end procedure
                                                                              14
```

Tied Tasks

Iterates until all task-parts have been allocated

**procedure** HEURTIED(G, m)1:  $A \leftarrow \emptyset; R \leftarrow p_{1,1}$ 2: 3:  $L \leftarrow \operatorname{ARRAY}(m, 0); S \leftarrow \operatorname{ARRAY}(m, \emptyset)$ 4: while SIZE(A)  $! = \sum_{i=1}^{N} n_i$  do 5:  $k \leftarrow \text{FIRSTIDLETHREAD}(L)$ 6:  $P_{i,i} \leftarrow \text{NEXTREADYJOB}(k, R, S_k, G)$ 7: if j == 1 then 8:  $\theta_i \leftarrow k$ 9: if  $j != n_i$  then 10:  $S_k \leftarrow \operatorname{APPEND}(i, S_k)$ 11: end if 12: else if  $j == n_i$  then 13:  $S_k \leftarrow \text{REMOVE}(i, S_k)$ 14: end if 15:  $\psi_{i,j} = \max(L_{\theta_i}, \psi_{i,j}); L_{\theta_i} \leftarrow \psi_{i,j} + C_{i,j}$  $A \leftarrow \text{APPEND}(P_{i,j}, A); R \leftarrow \text{REMOVE}(P_{i,j}, R)$ 16: 17: for  $P_{k,z} \mid (P_{i,j}, P_{k,z}) \in E$  do 18: if  $\psi_{k,z} < \psi_{i,j} + C_{i,j}$  then 19:  $\psi_{k,z} \leftarrow \psi_{i,j} + C_{i,j};$ 20: end if 21:  $F_{k,z} \leftarrow F_{k,z} + 1$ 22: if  $F_{k,z} == SIZE(INEDGES_{k,z})$  then 23:  $R \leftarrow \text{APPEND}(P_{k,z}, R)$ 24: end if 25: end for 26: end while  $\mu = \max_{i=1}^{\overline{m}} L_i$ 27: 28: return  $(\mu, \psi, \theta)$ 29: end procedure 15

• Tied Tasks

# Find the earliest available thread

1: **procedure** HEURTIED(G, m)2:  $A \leftarrow \emptyset; R \leftarrow p_{1,1}$ 3:  $L \leftarrow \operatorname{ARRAY}(m, 0); S \leftarrow \operatorname{ARRAY}(m, \emptyset)$ while SIZE(A)  $! = \sum_{i=1}^{N} n_i$  do 4: 5:  $k \leftarrow \text{FIRSTIDLETHREAD}(L)$  $P_{i,j} \leftarrow \text{NEXTREADYJOB}(k, R, S_k, G)$ 6: 7: if j == 1 then 8:  $\theta_i \leftarrow k$ 9: if  $j != n_i$  then 10:  $S_k \leftarrow \operatorname{APPEND}(i, S_k)$ 11: end if 12: else if  $j == n_i$  then 13:  $S_k \leftarrow \text{REMOVE}(i, S_k)$ 14: end if  $\psi_{i,j} = \max(L_{\theta_i}, \psi_{i,j}); L_{\theta_i} \leftarrow \psi_{i,j} + C_{i,j}$ 15: 16:  $A \leftarrow \text{APPEND}(P_{i,j}, A); R \leftarrow \text{REMOVE}(P_{i,j}, R)$ 17: for  $P_{k,z} \mid (P_{i,j}, P_{k,z}) \in E$  do 18: if  $\psi_{k,z} < \psi_{i,j} + C_{i,j}$  then 19:  $\psi_{k,z} \leftarrow \psi_{i,j} + C_{i,j};$ 20: end if 21:  $F_{k,z} \leftarrow F_{k,z} + 1$ 22: if  $F_{k,z} == SIZE(INEDGES_{k,z})$  then 23:  $R \leftarrow \text{APPEND}(P_{k,z}, R)$ 24: end if 25: end for 26: end while 27:  $\mu = \max_{i=1}^{m} L_i$ 28: return  $(\mu, \psi, \theta)$ 29: end procedure 16

• Tied Tasks

Find the next ready task-part according to previous heuristics

• Checks tied tasks scheduling restrictions

```
1: procedure HEURTIED(G, m)
            A \leftarrow \emptyset; R \leftarrow p_{1,1}
  2:
  3:
            L \leftarrow \operatorname{ARRAY}(m, 0); S \leftarrow \operatorname{ARRAY}(m, \emptyset)
            while SIZE(A) ! = \sum_{i=1}^{N} n_i do
  4:
  5:
                 k \leftarrow \text{FIRSTIDLETHREAD}(L)
  6:
              \mathbf{Z}P_{i,i} \leftarrow \text{NextReadyJob}(k, R, S_k, G)
  7:
                 if j == 1 then
  8
                      \theta_i \leftarrow k
 9:
                      if j != n_i then
10:
                           S_k \leftarrow \operatorname{APPEND}(i, S_k)
11:
                      end if
12:
                 else if j == n_i then
13:
                      S_k \leftarrow \text{REMOVE}(i, S_k)
14:
                 end if
15:
                 \psi_{i,j} = \max(L_{\theta_i}, \psi_{i,j}); L_{\theta_i} \leftarrow \psi_{i,j} + C_{i,j}
16:
                 A \leftarrow \text{Append}(P_{i,j}, A); R \leftarrow \text{Remove}(P_{i,j}, R)
17:
                 for P_{k,z} \mid (P_{i,j}, P_{k,z}) \in E do
18:
                      if \psi_{k,z} < \psi_{i,j} + C_{i,j} then
19:
                           \psi_{k,z} \leftarrow \psi_{i,j} + C_{i,j};
20:
                      end if
21:
                      F_{k,z} \leftarrow F_{k,z} + 1
22:
                      if F_{k,z} == SIZE(INEDGES_{k,z}) then
23:
                          R \leftarrow \text{APPEND}(P_{k,z}, R)
24:
                     end if
25:
                 end for
26:
            end while
            \mu = \max_{i=1}^{m} L_i
27:
28:
            return (\mu, \psi, \theta)
29: end procedure
                                                                              17
```

• Tied Tasks

Update task-part mapping

1: **procedure** HEURTIED(G, m) $A \leftarrow \emptyset; R \leftarrow p_{1,1}$ 2: 3:  $L \leftarrow \operatorname{ARRAY}(m, 0); S \leftarrow \operatorname{ARRAY}(m, \emptyset)$ while SIZE(A)  $! = \sum_{i=1}^{N} n_i$  do 4: 5:  $k \leftarrow \text{FIRSTIDLETHREAD}(L)$ 6:  $P_{i,i} \leftarrow \text{NEXTREADYJOB}(k, R, S_k, G)$ 7: if j == 1 then 8:  $\theta_i \leftarrow k$ 9: if  $j != n_i$  then 10.  $S_k \leftarrow \operatorname{APPEND}(i, S_k)$ 11: end if 12: else if  $j == n_i$  then 13:  $S_k \leftarrow \text{REMOVE}(i, S_k)$ 14: end if 15:  $\psi_{i,j} = \max(L_{\theta_i}, \psi_{i,j}); L_{\theta_i} \leftarrow \psi_{i,j} + C_{i,j}$ 16:  $A \leftarrow \text{APPEND}(P_{i,j}, A); R \leftarrow \text{REMOVE}(P_{i,j}, R)$ 17: for  $P_{k,z} \mid (P_{i,j}, P_{k,z}) \in E$  do 18: if  $\psi_{k,z} < \psi_{i,j} + C_{i,j}$  then 19:  $\psi_{k,z} \leftarrow \psi_{i,j} + C_{i,j};$ 20: end if 21:  $F_{k,z} \leftarrow F_{k,z} + 1$ 22: if  $F_{k,z} == SIZE(INEDGES_{k,z})$  then 23:  $R \leftarrow \text{APPEND}(P_{k,z}, R)$ 24: end if 25: end for 26: end while 27:  $\mu = \max_{i=1}^{m} L_i$ 28: return  $(\mu, \psi, \theta)$ 29: end procedure 18

Tied Tasks

#### Update

- task-part starting time
- thread next idle time

```
1: procedure HEURTIED(G, m)
            A \leftarrow \emptyset; R \leftarrow p_{1,1}
  2:
  3:
            L \leftarrow \operatorname{ARRAY}(m, 0); S \leftarrow \operatorname{ARRAY}(m, \emptyset)
            while SIZE(A) ! = \sum_{i=1}^{N} n_i do
  4:
  5:
                 k \leftarrow \text{FIRSTIDLETHREAD}(L)
  6:
                 P_{i,i} \leftarrow \text{NEXTREADYJOB}(k, R, S_k, G)
  7:
                 if j == 1 then
  8:
                      \theta_i \leftarrow k
 9:
                      if j != n_i then
10:
                           S_k \leftarrow \operatorname{APPEND}(i, S_k)
11:
                      end if
12:
                 else if j == n_i then
13:
                      S_k \leftarrow \text{REMOVE}(i, S_k)
14:
                 end if
15:
                 \psi_{i,j} = \max(L_{\theta_i}, \psi_{i,j}); L_{\theta_i} \leftarrow \psi_{i,j} + C_{i,j}
                 A \leftarrow \operatorname{Append}(P_{i,j}, A); R \leftarrow \operatorname{Remove}(P_{i,j}, R)
16:
17:
                 for P_{k,z} \mid (P_{i,j}, P_{k,z}) \in E do
18:
                      if \psi_{k,z} < \psi_{i,j} + C_{i,j} then
19:
                           \psi_{k,z} \leftarrow \psi_{i,j} + C_{i,j};
20:
                      end if
21:
                      F_{k,z} \leftarrow F_{k,z} + 1
22:
                      if F_{k,z} == SIZE(INEDGES_{k,z}) then
23:
                           R \leftarrow \text{APPEND}(P_{k,z}, R)
24:
                      end if
25:
                 end for
26:
            end while
27:
            \mu = \max_{i=1}^{m} L_i
28:
            return (\mu, \psi, \theta)
29: end procedure
                                                                               19
```

• Tied Tasks

Check next ready jobs

1: procedure HEURTIED(G, m) $A \leftarrow \emptyset; R \leftarrow p_{1,1}$ 2: 3:  $L \leftarrow \operatorname{ARRAY}(m, 0); S \leftarrow \operatorname{ARRAY}(m, \emptyset)$ while SIZE(A)  $! = \sum_{i=1}^{N} n_i$  do 4: 5:  $k \leftarrow \text{FIRSTIDLETHREAD}(L)$ 6:  $P_{i,i} \leftarrow \text{NEXTREADYJOB}(k, R, S_k, G)$ 7: if j == 1 then 8:  $\theta_i \leftarrow k$ 9: if  $j != n_i$  then 10:  $S_k \leftarrow \operatorname{APPEND}(i, S_k)$ 11: end if 12: else if  $j == n_i$  then 13:  $S_k \leftarrow \text{REMOVE}(i, S_k)$ 14: end if 15:  $\psi_{i,j} = \max(L_{\theta_i}, \psi_{i,j}); L_{\theta_i} \leftarrow \psi_{i,j} + C_{i,j}$  $A \leftarrow \text{APPEND}(P_{i,j}, A): R \leftarrow \text{REMOVE}(P_{i,j}, R)$ 16: 17: for  $P_{k,z} \mid (P_{i,j}, P_{k,z}) \in E$  do 18: if  $\psi_{k,z} < \psi_{i,j} + C_{i,j}$  then 19:  $\psi_{k,z} \leftarrow \psi_{i,j} + C_{i,j};$ 20. end if 21:  $F_{k,z} \leftarrow F_{k,z} + 1$ 22: if  $F_{k,z} == SIZE(INEDGES_{k,z})$  then 23:  $R \leftarrow \text{APPEND}(P_{k,z}, R)$ 24: end if 25: end for 26: end while 27:  $\mu = \max_{i=1}^{m} L_i$ 28: return  $(\mu, \psi, \theta)$ 29: end procedure 20

• Tied Tasks

Computes makespan

1: procedure HEURTIED(G, m) $A \leftarrow \emptyset; R \leftarrow p_{1,1}$ 2: 3:  $L \leftarrow \operatorname{ARRAY}(m, 0); S \leftarrow \operatorname{ARRAY}(m, \emptyset)$ while SIZE(A)  $! = \sum_{i=1}^{N} n_i$  do 4: 5:  $k \leftarrow \text{FIRSTIDLETHREAD}(L)$ 6:  $P_{i,i} \leftarrow \text{NEXTREADYJOB}(k, R, S_k, G)$ 7: if j == 1 then 8:  $\theta_i \leftarrow k$ 9: if  $j != n_i$  then 10:  $S_k \leftarrow \text{APPEND}(i, S_k)$ 11: end if 12: else if  $j == n_i$  then 13:  $S_k \leftarrow \text{REMOVE}(i, S_k)$ 14: end if  $\psi_{i,j} = \max(L_{\theta_i}, \psi_{i,j}); L_{\theta_i} \leftarrow \psi_{i,j} + C_{i,j}$ 15: 16:  $A \leftarrow \text{APPEND}(P_{i,j}, A); R \leftarrow \text{REMOVE}(P_{i,j}, R)$ 17: for  $P_{k,z} \mid (P_{i,j}, P_{k,z}) \in E$  do 18: if  $\psi_{k,z} < \psi_{i,j} + C_{i,j}$  then 19:  $\psi_{k,z} \leftarrow \psi_{i,j} + C_{i,j};$ 20: end if 21:  $F_{k,z} \leftarrow F_{k,z} + 1$ 22: if  $F_{k,z} == SIZE(INEDGES_{k,z})$  then 23:  $R \leftarrow \text{APPEND}(P_{k,z}, R)$ 24: end if 25: end for 26: end while  $\mu = \max_{i=1}^{m} L_i$ 27: 28: return  $(\mu, \psi, \theta)$ 29: end procedure 21

- Tied Tasks
- Untied task
  - Slightly simpler algorithm<sup>8</sup>/<sub>9</sub>
- **Complexity:**  $O(N^2p^2)$

```
1: procedure HEURTIED(G, m)
            A \leftarrow \emptyset; R \leftarrow p_{1,1}
  2:
  3:
            L \leftarrow \operatorname{ARRAY}(m, 0); S \leftarrow \operatorname{ARRAY}(m, \emptyset)
            while SIZE(A) ! = \sum_{i=1}^{N} n_i do
  4:
  5:
                 k \leftarrow \text{FIRSTIDLETHREAD}(L)
  6:
                P_{i,i} \leftarrow \text{NextReadyJob}(k, R, S_k, G)
  7:
                if j == 1 then
 8:
                     \theta_i \leftarrow k
                     if j != n_i then
10:
                           S_k \leftarrow \operatorname{APPEND}(i, S_k)
11:
                      end if
12:
                 else if j == n_i then
13:
                      S_k \leftarrow \text{REMOVE}(i, S_k)
14:
                 end if
15:
                \psi_{i,j} = \max(L_{\theta_i}, \psi_{i,j}); L_{\theta_i} \leftarrow \psi_{i,j} + C_{i,j}
16:
                 A \leftarrow \text{APPEND}(P_{i,j}, A); R \leftarrow \text{REMOVE}(P_{i,j}, R)
17:
                 for P_{k,z} \mid (P_{i,j}, P_{k,z}) \in E do
18:
                     if \psi_{k,z} < \psi_{i,j} + C_{i,j} then
19:
                           \psi_{k,z} \leftarrow \psi_{i,j} + C_{i,j};
20:
                      end if
21:
                     F_{k,z} \leftarrow F_{k,z} + 1
22:
                     if F_{k,z} == SIZE(INEDGES_{k,z}) then
23:
                           R \leftarrow \text{APPEND}(P_{k,z}, R)
24:
                     end if
25:
                end for
26:
            end while
27:
            \mu = \max_{i=1}^{m} L_i
28:
            return (\mu, \psi, \theta)
                                                                              22
29: end procedure
```

## **Evaluation: Experimental setting**

- Static allocation strategies vs. Response-Time upper bound [1]
- Task sets
  - Real OpenMP 3D path planning application
  - Synthetic DAG task-sets
- Intel<sup>®</sup> Core<sup>™</sup> i7-4770K CPU 3.50 GHz
  - 16GB RAM
  - ILP solver: IBM ILOG CPLEX Optimization Studio v.12.61
- [1] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna and E. Quiñones, *"Timing characterization of OpenMP4 tasking model"*, in CASES, 2015.

- Real case study: Airborne collision avoidance
- Application set ups: 3DPP1 and 3DPP2

– DAGs composed of 129 and 257 nodes, respectively

| 3DPP1 | 3DPP2 | 3DPP2 | 3DPP2 |
|-------|-------|-------|-------|
| (m=8) | (m=2) | (m=4) | (m=8) |

- Real case study: Airborne collision avoidance
- Application set ups: 3DPP1 and 3DPP2

– DAGs composed of 129 and 257 nodes, respectively

|     | 3DPP1 | 3DPP2 | 3DPP2 | 3DPP2 |
|-----|-------|-------|-------|-------|
|     | (m=8) | (m=2) | (m=4) | (m=8) |
| ILP | 254   | 506   | 506   | 506   |

**ILP:** Converged in ~10 sec. to the best found solution

- Real case study: Airborne collision avoidance
- Application set ups: 3DPP1 and 3DPP2

– DAGs composed of 129 and 257 nodes, respectively

|       | 3DPP1 | 3DPP2 | 3DPP2 | 3DPP2 |
|-------|-------|-------|-------|-------|
|       | (m=8) | (m=2) | (m=4) | (m=8) |
| ILP   | 254   | 506   | 506   | 506   |
| SPT   | 317   | 824   | 660   | 571   |
| LPT   | 254   | 659   | 577   | 530   |
| LNS   | 254   | 715   | 506   | 506   |
| LNSNL | 300   | 748   | 619   | 549   |
| LRW   | 254   | 717   | 506   | 506   |

Sub-optimal heuristics

- Real case study: Airborne collision avoidance
- Application set ups: 3DPP1 and 3DPP2

– DAGs composed of 129 and 257 nodes, respectively

|       | 3DPP1<br>(m=8) | 3DPP2<br>(m=2) | 3DPP2<br>(m=4) | 3DPP2<br>(m=8) |
|-------|----------------|----------------|----------------|----------------|
| ILP   | 254            | 506            | 506            | 506            |
| SPT   | 317            | 824            | 660            | 571            |
| LPT   | 254            | 659            | 577            | 530            |
| LNS   | 254            | 715            | 506            | 506            |
| LNSNL | 300            | 748            | 619            | 549            |
| LRW   | 254            | 717            | 506            | 506            |
|       | (7s)           | (11m41s)       | (11m48s)       | (11m53s)       |

Sub-optimal

**heuristics** 

- Real case study: Airborne collision avoidance
- Application set ups: 3DPP1 and 3DPP2

– DAGs composed of 129 and 257 nodes, respectively

|              | 3DPP1<br>(m=8) | 3DPP2<br>(m=2) | 3DPP2<br>(m=4) | 3DPP2<br>(m=8) |            |
|--------------|----------------|----------------|----------------|----------------|------------|
| ILP          | 254            | 506            | 506            | 506            | Dynamic    |
| SPT          | 317            | 824            | 660            | 571            | approach   |
| LPT          | 254            | 659            | 577            | 530            |            |
| LNS          | 254            | 715            | 506            | 506            | Max. over  |
| LNSNL        | 300            | 748            | 619            | 549            | estimation |
| LRW          | 254            | 717            | 506            | 506            |            |
| BOUND-untied | 331            | 827 🔶          | 666.5          | 586.25         |            |

63%

### **Evaluation: Synthetic OpenMP-DAGs**

### • Small task sets, 4 cores



### **Evaluation: Synthetic OpenMP-DAGs**



## Conclusions

• Parallel programing models are fundamental to exploit the performance capabilities of parallel architectures

– OpenMP, one of the most advanced

- However, relies on dynamic scheduling, not suitable in certain safety-critical domains
- We propose two OpenMP-complain static allocation strategies:
  - A computationally expensive but optimal ILP solver
  - More efficient but sub-optimal heuristics

# A static scheduling approach to enable safety-critical OpenMP applications

Alessandra Melani, **Maria A. Serrano**, Marko Bertogna, Isabella Cerutti, Eduardo Quiñones, Giorgio Buttazzo

This work was supported by the EU projects P-SOCRATES (FP7-ICT-2013-10) and HERCULES (H2020/ICT/2015/688860) and the Spanish Ministry of Science and Innovation grant TIN2015-65316-P

ASP-DAC 2017 January 16-19, 2017 Chiba/Tokyo, Japan



Barcelona Supercomputing Center Centro Nacional de Supercomputación



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH



UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA