
A static scheduling approach
to enable safety-critical
OpenMP applications

ASP-DAC 2017
January 16-19, 2017

Chiba/Tokyo, Japan

Alessandra Melani, Maria A. Serrano, Marko Bertogna,
Isabella Cerutti, Eduardo Quiñones, Giorgio Buttazzo

Motivation

• There is an increasing demand of new safety-
critical real-time applications providing high
performance
– Timing guarantees are fundamental to be fulfilled

• Performance demands can be satisfied by
using advanced parallel architectures
(multi/many-core)

2

Parallel programing models

• Fundamental for exploiting the performance of
multi- and many-cores
– Provide the level of abstraction to express parallel

applications, while hiding processor complexities
– Mandatory to exploit the massively parallel

computation capabilities

• OpenMP is one of the most used in HPC
– Increasingly adopted in embedded systems

3

OpenMP

4

Task-to-thread
scheduling

OpenpMP
Library

Multi/many-core

Transparent to the programmer

OpenMP
Program

• Supported by most of current many-core
architectures

• Allows expressing fine-grained and
unstructured parallelism
– Tasks
– Dependencies

Time predictable OpenMP

• OpenMP tasking
model
– Task Dependency

Graph (TDG)

• It resembles the Direct Acyclic Graph (DAG)
real-time scheduling model
– Addresses the time predictability

of real-time parallel computation

5

#pragma omp task depend(out:a,b) // T1
{ … }
#pragma omp task depend(inout:a) // T2
{ … }
#pragma omp task depend(inout:b) // T3
{ … }
#pragma omp task depend(in:a,b) // T4
{ … }

T1

T2 T3

T4

ba

ba

OpenMP for safety-critical systems?

• Current OpenMP implementations rely on
dynamic scheduling approaches
– Allow schedulability analysis exploiting the work-

conserving nature of scheduling [1]

– Less suitable to safety-critical systems timing analysis

• This work provides OpenMP-compliant static
allocation strategies
– Allow a tighter timing analysis as it knows where each

task executes
– More suitable to safety-critical systems timing analysis

6
[1] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna and E. Quiñones,

“Timing characterization of OpenMP4 tasking model”, in CASES, 2015.

OpenMP tasking model

7

𝑇𝑇4

𝑇𝑇2 𝑇𝑇3𝑇𝑇1

1 2 3

Team of threads

Task pool

𝑝𝑝11

𝑝𝑝21

𝑝𝑝12

𝑝𝑝31

𝑝𝑝13

𝑝𝑝41𝑝𝑝14M
ak

es
pa

n

OpenMP tasking model

8

Task-parts 𝒑𝒑𝒊𝒊,𝒋𝒋
• Represented by

their WCET 𝐶𝐶𝑖𝑖,𝑗𝑗

Task Scheduling Points (TSPs)
• Task may be suspended

T1 T2

T4

T3𝑝𝑝11
𝑝𝑝21𝑝𝑝12

𝑝𝑝31
𝑝𝑝13

𝑝𝑝41
𝑝𝑝14

OpenMP tasking model

9

OpenMP4 DAG-based

Task parts Nodes
Dependencies and TSPs Edges

P11

T1

P12

P21

T2

P41

T4

P31

T3

P13

P14

From an OpenMP
program, an

OpenMP-DAG
can be derived [2]

[2] R. Vargas, E. Quiñones and A.
Marongiu. “OpenMP and Timing
Predictability: A Possible Union?” In
18th Design, Automation and Test in
Europe Conference (DATE), 2015.

OpenMP tasking model

10

Task classification that affects the scheduling

• Tied tasks
– Must only be executed by the thread

that started it

• Untied tasks
– Can be resumed by any

thread after being suspended

P00Thread 0

Thread 1

P10 P01

P00Thread 0

Thread 1

P10

P01

T0

P01

P10

T1

P00

P01

OpenMP scheduling

• Dynamic scheduling [1]
– Valid only for untied tasks

• Our proposal: Static scheduling
– Valid for tied and untied tasks
– Two approaches:

• Optimal ILP based
• Sub-optimal Heuristics-based

11
[1] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna and E. Quiñones,

“Timing characterization of OpenMP4 tasking model”, in CASES, 2015.

𝑅𝑅𝑢𝑢𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺 +
1
𝑚𝑚

(𝑣𝑣𝑣𝑣𝑙𝑙 𝐺𝐺 − 𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺)) ≤ 𝐷𝐷

Strategy 1: Optimal static allocation

12

• Problem definition: Optimally allocate
OpenMP task-parts to threads
– Determine the minimum time interval needed to

execute an OpenMP application on m threads

• Solution
– ILP formulation for tied tasks
– ILP formulation for untied tasks

• Complexity
– NP-hard
– Number of variables and constrains: 𝑂𝑂 𝑁𝑁2𝑝𝑝2𝑚𝑚

Strategy 2: Sub-optimal static allocation

• Heuristics (priority rules) to solve the
makespan minimization problem [3,4]:
– Longest Processing Time (LPT)
– Shortest Processing Time (SPT)
– Largest Number of Successors in the Next Level

(LNSNL)
– Largest Number of Successors (LNS)
– Largest Remaining Workload (LRW)

13

[3] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer Science & Business Media, 2012.
[4] K. E. Raheb, C. T. Kiranoudis, P. P. Repoussis, and C. D. Tarantilis, “Production scheduling with complex

precedence constraints in parallel machines” Computing and Informatics, vol. 24, no. 3, 2012.

Strategy 2: Sub-optimal static allocation

14

• Tied tasks
– Input

• G: OpenMP DAG
• m: Num. threads

– Output
• μ: Makespan
• Ψ: Task-parts starting times
• θ: Task-to-thread mapping

– A: Allocated task-parts
– R: Ready task-parts
– L[1..m]: Last idle time

of each thread
– S[1..m]: Tasks

suspended on each thread

Strategy 2: Sub-optimal static allocation

15

Iterates until all
task-parts have
been allocated

• Tied Tasks

Strategy 2: Sub-optimal static allocation

16

Find the earliest
available thread

• Tied Tasks

Strategy 2: Sub-optimal static allocation

17

Find the next ready
task-part according to
previous heuristics
• Checks tied tasks

scheduling restrictions

• Tied Tasks

Strategy 2: Sub-optimal static allocation

18

Update task-part
mapping

• Tied Tasks

Strategy 2: Sub-optimal static allocation

19

Update
• task-part starting time
• thread next idle time

• Tied Tasks

Strategy 2: Sub-optimal static allocation

20

Check next
ready jobs

• Tied Tasks

Strategy 2: Sub-optimal static allocation

21

Computes
makespan

• Tied Tasks

Strategy 2: Sub-optimal static allocation

22

• Tied Tasks

• Untied task
– Slightly simpler algorithm

• Complexity: 𝑂𝑂 𝑁𝑁2𝑝𝑝2

Evaluation: Experimental setting

23

• Static allocation strategies vs. Response-Time
upper bound [1]

• Task sets
– Real OpenMP 3D path planning application
– Synthetic DAG task-sets

• Intel® Core™ i7-4770K CPU 3.50 GHz
– 16GB RAM
– ILP solver: IBM ILOG CPLEX Optimization Studio

v.12.61

[1] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna and E. Quiñones,
“Timing characterization of OpenMP4 tasking model”, in CASES, 2015.

Evaluation: 3D Path Planning application

24

• Real case study: Airborne collision avoidance

• Application set ups: 3DPP1 and 3DPP2
– DAGs composed of 129 and 257 nodes, respectively

• Real case study: Airborne collision avoidance

• Application set ups: 3DPP1 and 3DPP2
– DAGs composed of 129 and 257 nodes, respectively

Evaluation: 3D Path Planning application

25

ILP: Converged in ~10 sec.
to the best found solution

• Real case study: Airborne collision avoidance

• Application set ups: 3DPP1 and 3DPP2
– DAGs composed of 129 and 257 nodes, respectively

Evaluation: 3D Path Planning application

26

Sub-optimal
heuristics

• Real case study: Airborne collision avoidance

• Application set ups: 3DPP1 and 3DPP2
– DAGs composed of 129 and 257 nodes, respectively

Evaluation: 3D Path Planning application

27

Sub-optimal
heuristics

• Real case study: Airborne collision avoidance

• Application set ups: 3DPP1 and 3DPP2
– DAGs composed of 129 and 257 nodes, respectively

Evaluation: 3D Path Planning application

28

Dynamic
approach

Max. over
estimation: 63%

Evaluation: Synthetic OpenMP-DAGs

29

• Small task sets, 4 cores
Max. over estimation
dynamic vs. static ILP: ~40%

Larger solution space for the
untied model: 50% slower

Evaluation: Synthetic OpenMP-DAGs

30

• Large task sets, 4 cores
Best feasible solution by ILP solver in 300 s

LNSNL outperforms
ILP for untied

OpenMP Tied Model OpenMP Untied Model

Conclusions

• Parallel programing models are fundamental to
exploit the performance capabilities of parallel
architectures
– OpenMP, one of the most advanced

• However, relies on dynamic scheduling, not
suitable in certain safety-critical domains

• We propose two OpenMP-complain static
allocation strategies:
– A computationally expensive but optimal ILP solver
– More efficient but sub-optimal heuristics

31

A static scheduling approach
to enable safety-critical
OpenMP applications

ASP-DAC 2017
January 16-19, 2017

Chiba/Tokyo, Japan

Alessandra Melani, Maria A. Serrano, Marko Bertogna,
Isabella Cerutti, Eduardo Quiñones, Giorgio Buttazzo

This work was supported by the EU projects P-SOCRATES (FP7-
ICT-2013-10) and HERCULES (H2020/ICT/2015/688860) and the
Spanish Ministry of Science and Innovation grant TIN2015-65316-P

	A static scheduling approach�to enable safety-critical �OpenMP applications
	Motivation
	Parallel programing models
	OpenMP
	Time predictable OpenMP
	OpenMP for safety-critical systems?
	OpenMP tasking model
	OpenMP tasking model
	OpenMP tasking model
	OpenMP tasking model
	OpenMP scheduling
	Strategy 1: Optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Strategy 2: Sub-optimal static allocation
	Evaluation: Experimental setting
	Evaluation: 3D Path Planning application
	Evaluation: 3D Path Planning application
	Evaluation: 3D Path Planning application
	Evaluation: 3D Path Planning application
	Evaluation: 3D Path Planning application
	Evaluation: Synthetic OpenMP-DAGs
	Evaluation: Synthetic OpenMP-DAGs
	Conclusions
	A static scheduling approach�to enable safety-critical �OpenMP applications

