
1

Detailed and Highly Parallelizable
Cycle-Accurate Network-on-Chip

Simulation on GPGPU

ASP-DAC, January 16-19, 2017
Chiba/Tokyo, Japan

Amir Charif, Alexandre Coelho, Nacer-Eddine Zergainoh,
Michael Nicolaidis

Univ. Grenoble Alpes, TIMA, F-38000 Grenoble, France

CNRS, TIMA, F-38000 Grenoble, France
{Amir.Charif, Nacer-Eddine.Zergainoh, Alexandre.Coelho, Michael.Nicolaidis}@imag.fr

Outline

 Introduction to NoCs and NoC simulation
 Challenges in NoC simulation
 Proposed approach:

 Task decomposition
 Implementation details

 Evaluation
 Conclusion and future improvements

2

Why NoCs ?

 The preferred communication
medium for MPSoCs, CMPs,
GPUs, …

 Scalable support large
number of nodes

 Actively researched:

 Performance, Fault-tolerance,
congestion, quality of service,
…

3

S S

S S

P P

P P

S S

S S

P P

P P

S S

S S

P P

P P

S S

S S

P P

P P

S

Evaluating a new NoC Architectures

 Early validation is done by simulation

 Simulating at the RTL is extremely slow !

 Cycle-accurate simulators (booksim, garnet)
are faster
 But not fast enough !

4

Challenges in NoC Simulation

 A large number of scenarios must be tested
 Fault scenarios, TSV placement in 3D NoCs, etc.

 NoCs are getting larger (thousands of nodes)

 The larger the NoC, the more iterations are
required

 Need for fast, accurate and scalable
simulation for larger NoCs

5

Multicore-based Parallel Simulation

 Easy to program

 Portable code, but...

 Speedup is very hard to achieve because of
slow synchronization
 Cycle-accuracy requires one synchronization per cycle

 Accuracy is often traded off for speed (e.g. HORNET)

 Number of hardware threads still very limited

6

Graphics Processors:
The ideal Platform for Simulating NoCs ?
 Widely available
 Good programmability (CUDA, OpenCL)
 Very high compute capability
 Huge number of threads to compensate for

slow synchronization
 But…
 Many architectural challenges: Memory

access, thread divergence, etc.
7

Parallel simulation - Key challenges:
Task decomposition

 How to split the simulation into independent tasks ?

 1 Router = 1 task ? [1]
 OK for CPUs, too
coarse-grained for GPUs

 1 IO port = 1 task ? [2]
 How about centralized
modules ? (e.g. VC Arbiter)
 How about user extensions ?

8

[1] M. Eggenberger and M. Radetzki, NoCS 2013.
[2] M. Zolghadr, K. Mirhosseini, S. Gorgin and A. Nayebi, MEMOCODE 2011.

Parallel Simulation – Key Challenges:
Thread Divergence and Memory Usage

 How to map the tasks to GPU threads ?
 Different tasks may execute different code

 Every W (warp size) threads are executed following SIMT
(Single Instruction Multiple Threads)

 Divergent code is serialized within a warp

 How to optimize memory usage ?
 Accessing global memory (VRAM) is relatively slow

 A limited amount of fast on-chip memory (Shared memory)
is available

9

Our Approach: Preliminaries

 Modular design to allow easy extension

 Modules can be executed in parallel within
one cycle

 Each module is uniquely identified by its
router ID and its module ID
 E.G. if 3 = Switch Allocator, then (12, 3) is the switch

allocator of router 12.

 Global function execModule(r,m,c)executes
module (r, m) at cycle c.

10

Our Approach: Task Definition

 Modules are grouped into « module groups »

 The modules within each module group are
executed sequentially

 Makes it possible to
control the level of
parallelism (number of
threads)

 1 module group = 1 task.

11

Our Approach: Task Mapping
 Identify each thread using two coordinates (x,y) such

that TID=x+y*R where R is the number of routers.

 Map task (r,g)to thread (r,g)

 The module group (code to
execute) only changes every
R threads

 If R is a multiple of the warp
size W=32, every warp
executes a single module group

 Thread divergence is minimized
12

0 1 30 31

32 33 62 63

64 65 94 95

Y
(M

od
ul

e
G

ro
up

)

X (Router ID)

Threads
TID=X+Y*R

Warp

Implementation Details:
Achieving Hardware Fidelity

 Values written in cycle T must not be visible before T+1

 Modules must be executable in parallel without using
atomic operations

 Solution: Register ownership
 Every module owns a set of Registers
 A register stores two values (odd/even) [1]
 On odd cycles, read from odd and write to even
 On even cycles, read from even and write to odd
 Modules only write to registers they own, but can read

any module’s registers

13
[1] M. Eggenberger and M. Radetzki, NoCS 2013.

Implementing Register Ownership

14

#define reg_read(reg,parity) (reg)[(parity)]

#define reg_write(reg,v, parity) (reg)[!(parity)]=v

struct MyModule {

byte my_first_register[2];

byte my_second_register[2];

int my_local_counter;

};

__global__ void kernel(…) {

int64_t cycle = 0;

bool parity = 0;

while (continue_simulation){

…

execTask(threadIdx.x, threadIdx.y, parity,…);

cycle++;

parity = cycle & 1;

synchronize(threadIdx, cycle * NumBlocks);

}

}

Odd

Even

Odd

Even

Odd

Even

Odd

Even

Odd

Even

Odd

Even

M M

Cycle 0 Cycle 1

Example Module: Credit Manager 1/2

 Owns one register per Virtual Channel representing
the number of free buffers in the downstream input

 Reads two registers from other modules:
 Switch allocation result (written by switch allocator in

previous cycle)
 Credit link (written by downstream router in previous cycle)

 If a flit is leaving the router, decrement the credit count
for target VC

 If a credit was received, increment the credit count

15

Example Module: Credit Manager 2/2

16

#define reg_read(reg,parity) (reg)[(parity)]
#define reg_write(reg,v, parity) (reg)[!(parity)]=v

struct SwitchAllocator {
…
unsigned alloc_input[2]; //register
unsigned alloc_output[2];
…

};

__device__ void doCreditManager(CreditManager* cm, SwitchAllocator* sa,
CreditLink* cl, bool parity) {

bool credit_valid = reg_read (cl->valid, parity);
byte credit_vc = reg_read(cl->vc, parity);
unsigned allocated_vcs = reg_read(sa->alloc_output, parity);
for (int vc = 0; vc < NVC; vc++) {

byte credits = reg_read(cm->credit_count[vc], parity);
if (credit_valid && credit_vc == vc) credits++;
if (allocated_vcs & (1<<vc)) credits--;
reg_write(cm->credit_count[vc],credits,parity);

}
}

struct CreditLink {
bool valid[2];
byte vc[2];

};

struct CreditManager {
byte credit_count[NVC][2];

};

Our Approach:
Per-Cycle Synchronization

 Synchronization among thread blocks is done using a
global lock variable similar to [1]

 Thread 0,0 of each block waits for its block to finish
current cycle

 Thread 0,0 of all blocks
participate to global
lock-based synchronization

 Threads of each block wait
for thread 0,0 of their block
before starting next cycle

17

procedure
synchronize(threadID,target){

let x,y←threadID
__syncthreads()

if (x,y=0,0){
atomically Lock←Lock+1
while (Lock ≠ target){
}

}
__syncthreads()

}

[1] S. Xiao and W. c. Feng, IPDPS 2010.

Memory Usage Optimization:
Compact Flit Queues 1/2

 Memory usage usually varies during simulation

 E.G. injection of a new packet in Garnet:
 for (int i=0;i<size;i++) flit_t* flit = new flit_t(…);…

 Usually only header information is useful for
simulation

 An input VC FIFO usually stores flits of one
unique packet (atomic VC allocation)

18

Memory Usage Optimization:
Compact Flit Queues 2/2

 We propose…

 Size-independent flit queue structure
 Can represent any sequence of flits belonging to the

same packet
 Push, Pop and other operations can be implemented

by incrementing « end » and « start »
 No allocation required for inserting new flits
 The amount of traffic does not affect the memory
usage of the simulator !

19

Evaluation
Speed of GPU-based implementation is compared with CPU-base
sequential version

 Module code is identical

 CPU: AMD A8-6500
@3.5Ghz, 4.1Ghz Boost
clock (good single core
performance) -O2

 GPU: NVidia GeForce GTX 980Ti, 22 Stream Multiprocessors (SM),
6GB GDDR5, 96KB Shared Memory / SM.

 Network latency is compared with that obtained with an RTL router
implementation (Netmaker)

20

void seq_sim(…) {
int64_t cycle = 0;
while(continue_simulation) {

for(int router=0; router<R;router++)
for(int module=0;module<M;module++)

execModule(router, module, cycle);

cycle++;
}

}

Speedups and Accuracy

 Excellent speedups

 Higher for larger networks

 High accuracy (close to RTL)

21

0

10

20

30

40

50

60

70

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11 0,12 0,13 0,14 0,15

Av
g.

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

Injection rate (flit/node/cycle)

Reference Netmaker

Scalability

 Simulation time doubles (0,5 second to 1 second)
but remains very small

 Use of more SMs vs.
Longer synchronization

 Reflects high scalability

22

Currently Implemented Features

 VC router with separable allocators and credit-
based flow control

 Topologies
 2D, 3D, and stacked Meshes with partial vertical connections

 A variety of deterministic and adaptive routing algorithms

 All the commonly used synthetic traffic patterns (Uniform,
Hotspot, Transpose, Bit Complement, Shuffle, Bit Reversal)

 Trace-based simulation
 Dependency-driven trace simulation with Netrace (PARSEC)

 Support for checkpointing and fast-forwarding

23

Future Improvements

 Power/Area estimation with ORION3.0

 Temperature estimation using HotSpot

 Custom Fault model for realistic fault simulation

 Source code to be available online

24

Conclusion
 A parallel simulator design was presented

 Modular, highly extensible, highly parallelizable

 GPU-specific implementation challenges
were addressed
 Task mapping, synchronization, memory usage

 Ultra-fast NoC simulation on GPU with
high hardware fidelity was achieved

25

THANK YOU FOR YOUR
ATTENTION !

26

ご清聴ありがとうございました

amir.charif @imag.fr
http://tima.imag.fr/tima/en/index.html

	Detailed and Highly Parallelizable Cycle-Accurate Network-on-Chip Simulation on GPGPU
	Outline
	Why NoCs ?
	Evaluating a new NoC Architectures
	Challenges in NoC Simulation
	Multicore-based Parallel Simulation
	Graphics Processors: �The ideal Platform for Simulating NoCs ?
	Parallel simulation - Key challenges:�Task decomposition
	Parallel Simulation – Key Challenges: Thread Divergence and Memory Usage
	Our Approach: Preliminaries
	Our Approach: Task Definition
	Our Approach: Task Mapping
	Implementation Details:�Achieving Hardware Fidelity
	Implementing Register Ownership
	Example Module: Credit Manager 1/2
	Example Module: Credit Manager 2/2
	Our Approach: �Per-Cycle Synchronization
	Memory Usage Optimization: �Compact Flit Queues 1/2
	Memory Usage Optimization: �Compact Flit Queues 2/2
	Evaluation
	Speedups and Accuracy
	Scalability
	Currently Implemented Features
	Future Improvements
	Conclusion
	Thank you for your attention !

