
1

Detailed and Highly Parallelizable
Cycle-Accurate Network-on-Chip

Simulation on GPGPU

ASP-DAC, January 16-19, 2017
Chiba/Tokyo, Japan

Amir Charif, Alexandre Coelho, Nacer-Eddine Zergainoh,
Michael Nicolaidis

Univ. Grenoble Alpes, TIMA, F-38000 Grenoble, France

CNRS, TIMA, F-38000 Grenoble, France
{Amir.Charif, Nacer-Eddine.Zergainoh, Alexandre.Coelho, Michael.Nicolaidis}@imag.fr

Outline

 Introduction to NoCs and NoC simulation
 Challenges in NoC simulation
 Proposed approach:

 Task decomposition
 Implementation details

 Evaluation
 Conclusion and future improvements

2

Why NoCs ?

 The preferred communication
medium for MPSoCs, CMPs,
GPUs, …

 Scalable  support large
number of nodes

 Actively researched:

 Performance, Fault-tolerance,
congestion, quality of service,
…

3

S S

S S

P P

P P

S S

S S

P P

P P

S S

S S

P P

P P

S S

S S

P P

P P

S

Evaluating a new NoC Architectures

 Early validation is done by simulation

 Simulating at the RTL is extremely slow !

 Cycle-accurate simulators (booksim, garnet)
are faster
 But not fast enough !

4

Challenges in NoC Simulation

 A large number of scenarios must be tested
 Fault scenarios, TSV placement in 3D NoCs, etc.

 NoCs are getting larger (thousands of nodes)

 The larger the NoC, the more iterations are
required

 Need for fast, accurate and scalable
simulation for larger NoCs

5

Multicore-based Parallel Simulation

 Easy to program

 Portable code, but...

 Speedup is very hard to achieve because of
slow synchronization
 Cycle-accuracy requires one synchronization per cycle

 Accuracy is often traded off for speed (e.g. HORNET)

 Number of hardware threads still very limited

6

Graphics Processors:
The ideal Platform for Simulating NoCs ?
 Widely available
 Good programmability (CUDA, OpenCL)
 Very high compute capability
 Huge number of threads to compensate for

slow synchronization
 But…
 Many architectural challenges: Memory

access, thread divergence, etc.
7

Parallel simulation - Key challenges:
Task decomposition

 How to split the simulation into independent tasks ?

 1 Router = 1 task ? [1]
 OK for CPUs, too
coarse-grained for GPUs

 1 IO port = 1 task ? [2]
 How about centralized
modules ? (e.g. VC Arbiter)
 How about user extensions ?

8

[1] M. Eggenberger and M. Radetzki, NoCS 2013.
[2] M. Zolghadr, K. Mirhosseini, S. Gorgin and A. Nayebi, MEMOCODE 2011.

Parallel Simulation – Key Challenges:
Thread Divergence and Memory Usage

 How to map the tasks to GPU threads ?
 Different tasks may execute different code

 Every W (warp size) threads are executed following SIMT
(Single Instruction Multiple Threads)

 Divergent code is serialized within a warp

 How to optimize memory usage ?
 Accessing global memory (VRAM) is relatively slow

 A limited amount of fast on-chip memory (Shared memory)
is available

9

Our Approach: Preliminaries

 Modular design to allow easy extension

 Modules can be executed in parallel within
one cycle

 Each module is uniquely identified by its
router ID and its module ID
 E.G. if 3 = Switch Allocator, then (12, 3) is the switch

allocator of router 12.

 Global function execModule(r,m,c)executes
module (r, m) at cycle c.

10

Our Approach: Task Definition

 Modules are grouped into « module groups »

 The modules within each module group are
executed sequentially

 Makes it possible to
control the level of
parallelism (number of
threads)

 1 module group = 1 task.

11

Our Approach: Task Mapping
 Identify each thread using two coordinates (x,y) such

that TID=x+y*R where R is the number of routers.

 Map task (r,g)to thread (r,g)

 The module group (code to
execute) only changes every
R threads

 If R is a multiple of the warp
size W=32, every warp
executes a single module group

 Thread divergence is minimized
12

0 1 30 31

32 33 62 63

64 65 94 95

Y
(M

od
ul

e
G

ro
up

)

X (Router ID)

Threads
TID=X+Y*R

Warp

Implementation Details:
Achieving Hardware Fidelity

 Values written in cycle T must not be visible before T+1

 Modules must be executable in parallel without using
atomic operations

 Solution: Register ownership
 Every module owns a set of Registers
 A register stores two values (odd/even) [1]
 On odd cycles, read from odd and write to even
 On even cycles, read from even and write to odd
 Modules only write to registers they own, but can read

any module’s registers

13
[1] M. Eggenberger and M. Radetzki, NoCS 2013.

Implementing Register Ownership

14

#define reg_read(reg,parity) (reg)[(parity)]

#define reg_write(reg,v, parity) (reg)[!(parity)]=v

struct MyModule {

byte my_first_register[2];

byte my_second_register[2];

int my_local_counter;

};

__global__ void kernel(…) {

int64_t cycle = 0;

bool parity = 0;

while (continue_simulation){

…

execTask(threadIdx.x, threadIdx.y, parity,…);

cycle++;

parity = cycle & 1;

synchronize(threadIdx, cycle * NumBlocks);

}

}

Odd

Even

Odd

Even

Odd

Even

Odd

Even

Odd

Even

Odd

Even

M M

Cycle 0 Cycle 1

Example Module: Credit Manager 1/2

 Owns one register per Virtual Channel representing
the number of free buffers in the downstream input

 Reads two registers from other modules:
 Switch allocation result (written by switch allocator in

previous cycle)
 Credit link (written by downstream router in previous cycle)

 If a flit is leaving the router, decrement the credit count
for target VC

 If a credit was received, increment the credit count

15

Example Module: Credit Manager 2/2

16

#define reg_read(reg,parity) (reg)[(parity)]
#define reg_write(reg,v, parity) (reg)[!(parity)]=v

struct SwitchAllocator {
…
unsigned alloc_input[2]; //register
unsigned alloc_output[2];
…

};

__device__ void doCreditManager(CreditManager* cm, SwitchAllocator* sa,
CreditLink* cl, bool parity) {

bool credit_valid = reg_read (cl->valid, parity);
byte credit_vc = reg_read(cl->vc, parity);
unsigned allocated_vcs = reg_read(sa->alloc_output, parity);
for (int vc = 0; vc < NVC; vc++) {

byte credits = reg_read(cm->credit_count[vc], parity);
if (credit_valid && credit_vc == vc) credits++;
if (allocated_vcs & (1<<vc)) credits--;
reg_write(cm->credit_count[vc],credits,parity);

}
}

struct CreditLink {
bool valid[2];
byte vc[2];

};

struct CreditManager {
byte credit_count[NVC][2];

};

Our Approach:
Per-Cycle Synchronization

 Synchronization among thread blocks is done using a
global lock variable similar to [1]

 Thread 0,0 of each block waits for its block to finish
current cycle

 Thread 0,0 of all blocks
participate to global
lock-based synchronization

 Threads of each block wait
for thread 0,0 of their block
before starting next cycle

17

procedure
synchronize(threadID,target){

let x,y←threadID
__syncthreads()

if (x,y=0,0){
atomically Lock←Lock+1
while (Lock ≠ target){
}

}
__syncthreads()

}

[1] S. Xiao and W. c. Feng, IPDPS 2010.

Memory Usage Optimization:
Compact Flit Queues 1/2

 Memory usage usually varies during simulation

 E.G. injection of a new packet in Garnet:
 for (int i=0;i<size;i++) flit_t* flit = new flit_t(…);…

 Usually only header information is useful for
simulation

 An input VC FIFO usually stores flits of one
unique packet (atomic VC allocation)

18

Memory Usage Optimization:
Compact Flit Queues 2/2

 We propose…

 Size-independent flit queue structure
 Can represent any sequence of flits belonging to the

same packet
 Push, Pop and other operations can be implemented

by incrementing « end » and « start »
 No allocation required for inserting new flits
 The amount of traffic does not affect the memory
usage of the simulator !

19

Evaluation
Speed of GPU-based implementation is compared with CPU-base
sequential version 

 Module code is identical

 CPU: AMD A8-6500
@3.5Ghz, 4.1Ghz Boost
clock (good single core
performance) -O2

 GPU: NVidia GeForce GTX 980Ti, 22 Stream Multiprocessors (SM),
6GB GDDR5, 96KB Shared Memory / SM.

 Network latency is compared with that obtained with an RTL router
implementation (Netmaker)

20

void seq_sim(…) {
int64_t cycle = 0;
while(continue_simulation) {

for(int router=0; router<R;router++)
for(int module=0;module<M;module++)

execModule(router, module, cycle);

cycle++;
}

}

Speedups and Accuracy

 Excellent speedups

 Higher for larger networks

 High accuracy (close to RTL)

21

0

10

20

30

40

50

60

70

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11 0,12 0,13 0,14 0,15

Av
g.

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

Injection rate (flit/node/cycle)

Reference Netmaker

Scalability

 Simulation time doubles (0,5 second to 1 second)
but remains very small

 Use of more SMs vs.
Longer synchronization

 Reflects high scalability

22

Currently Implemented Features

 VC router with separable allocators and credit-
based flow control

 Topologies
 2D, 3D, and stacked Meshes with partial vertical connections

 A variety of deterministic and adaptive routing algorithms

 All the commonly used synthetic traffic patterns (Uniform,
Hotspot, Transpose, Bit Complement, Shuffle, Bit Reversal)

 Trace-based simulation
 Dependency-driven trace simulation with Netrace (PARSEC)

 Support for checkpointing and fast-forwarding

23

Future Improvements

 Power/Area estimation with ORION3.0

 Temperature estimation using HotSpot

 Custom Fault model for realistic fault simulation

 Source code to be available online

24

Conclusion
 A parallel simulator design was presented

 Modular, highly extensible, highly parallelizable

 GPU-specific implementation challenges
were addressed
 Task mapping, synchronization, memory usage

 Ultra-fast NoC simulation on GPU with
high hardware fidelity was achieved

25

THANK YOU FOR YOUR
ATTENTION !

26

ご清聴ありがとうございました

amir.charif @imag.fr
http://tima.imag.fr/tima/en/index.html

	Detailed and Highly Parallelizable Cycle-Accurate Network-on-Chip Simulation on GPGPU
	Outline
	Why NoCs ?
	Evaluating a new NoC Architectures
	Challenges in NoC Simulation
	Multicore-based Parallel Simulation
	Graphics Processors: �The ideal Platform for Simulating NoCs ?
	Parallel simulation - Key challenges:�Task decomposition
	Parallel Simulation – Key Challenges: Thread Divergence and Memory Usage
	Our Approach: Preliminaries
	Our Approach: Task Definition
	Our Approach: Task Mapping
	Implementation Details:�Achieving Hardware Fidelity
	Implementing Register Ownership
	Example Module: Credit Manager 1/2
	Example Module: Credit Manager 2/2
	Our Approach: �Per-Cycle Synchronization
	Memory Usage Optimization: �Compact Flit Queues 1/2
	Memory Usage Optimization: �Compact Flit Queues 2/2
	Evaluation
	Speedups and Accuracy
	Scalability
	Currently Implemented Features
	Future Improvements
	Conclusion
	Thank you for your attention !

