

BHNN: a Memory-Efficient Accelerator for Compressing Deep <u>N</u>eural <u>N</u>etwork with <u>B</u>locked <u>H</u>ashing Techniques

Jingyang Zhu¹, Zhiliang Qian^{2*}, and Chi-Ying Tsui¹

¹ The Hong Kong University of Science and Technology, Hong Kong ² Shanghai Jiao Tong University, Shanghai, China

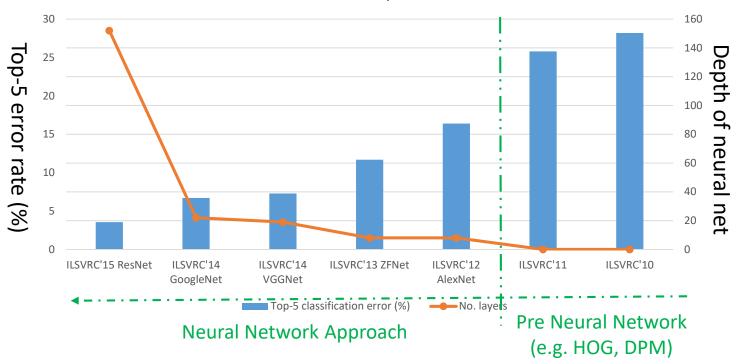
IEEE/ACM ASP-DAC 2017, 19th Jan., 2017, Chiba

Introduction

- Related work
- Blocked hash neural network: algorithm
- Blocked hash neural network: hardware architecture
- Experiment results
- Conclusion

The renaissance of neural network

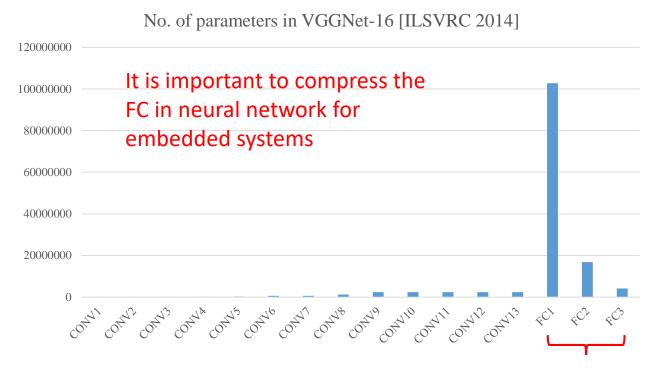
- Big data & powerful machine (Moore's Law)
- The increasing scale of neural networks in ImageNet visual recognition challenge



Revolution of Depth in ILSVRC

Three elementary layers in neural network

- Convolutional layer (CONV): mostly computation-intensive
- Pooling layer (POOL)
- Fully-connected layer (FC): mostly memory-intensive



Take up 90% parameters (~120M parameters)

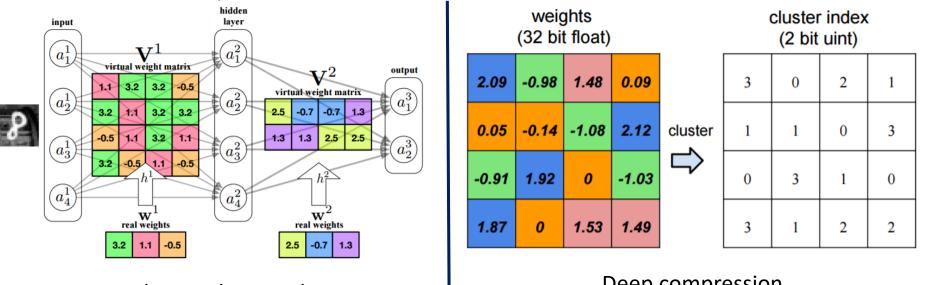
Introduction

• Related work

- Blocked hash neural network: algorithm
- Blocked hash neural network: hardware architecture
- Experiment results
- Conclusion

Related work

- Hash Neural Network^[1]: map real weights into virtual weights through hash function
- Deep compression^[2]: map real weights into virtual weights through cluster index (obtained from k-means)



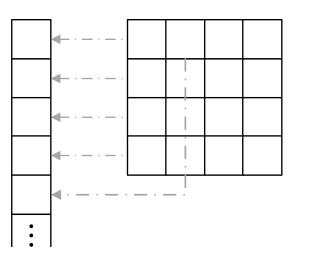
Hash neural network

Deep compression

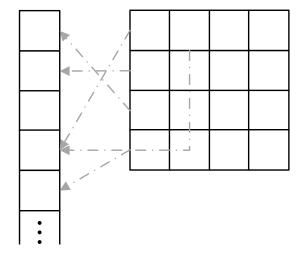
[1] Chen W, Wilson J T, Tyree S, et al. Compressing neural networks with the hashing trick[J]. [2] Han S, Mao H, Dally W J. Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding[J].

Potential issues of hash neural network and deep compression

• No spatial locality in hashed neural network



Organize the weights in adjacent locations in memory



Scattering hash map destroys the spatial locality in memory access

• Deep compression: additional storage of cluster index

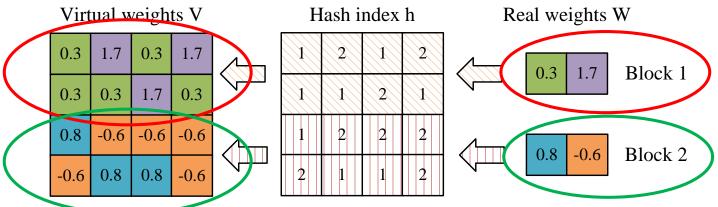
- Introduction
- Related work

• Blocked hash neural network: algorithm

- Blocked hash neural network: hardware architecture
- Experiment results
- Conclusion

Our approach: blocked hash neural network

• Basic idea: preserve the spatial locality in hash neural network through the blocked constraint



- Real weights in block 1 only serve for first 2 rows in virtual weights
- Real weights in block 2 only serve for last 2 rows in virtual weights
- No cluster index storage is required since the mapping is through a predetermined hash functions
- Real weight block size b determines the tradeoff of locality and performance degradation

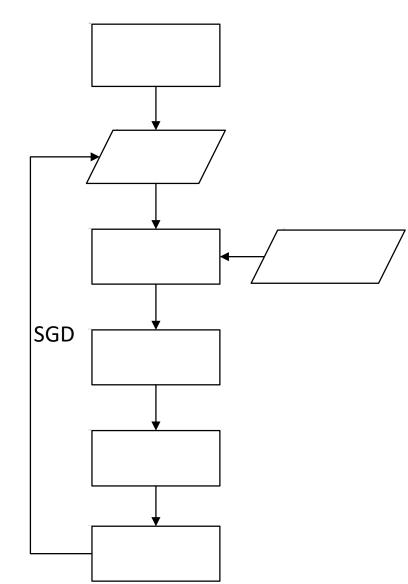
Training of blocked hash neural network

• Backpropagation into the real weights, derived from chain rules

 $\frac{\partial \mathcal{L}}{\partial W_k^{(l)}} = \sum_{i,j} \frac{\partial \mathcal{L}}{\partial V_{ij}^{(l)}} \frac{\partial V_{ij}^{(l)}}{\partial W_k^{(l)}} = \sum_{i,j} \delta_{ij}^{(l)} \mathbb{1}\{h(i,j,l) = k\}$

where δ is the error term which can be obtained from backpropagation, and $1\{\cdot\}$ is the indicator function

 Training flow of blocked hash neural network



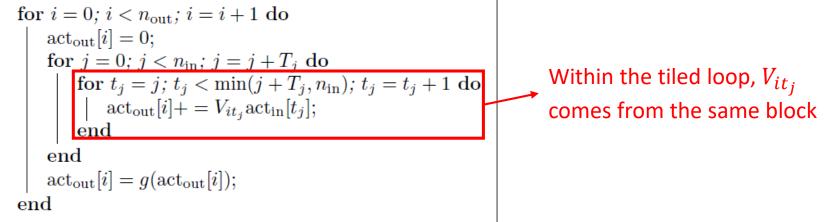
Hardware acceleration of blocked hash neural network: basic arithmetic operation

• The basic operation of feedforward pass is a matrix vector operation

for
$$i = 0$$
; $i < n_{out}$; $i = i + 1$ do
 $\begin{vmatrix} \operatorname{act}_{out}[i] = 0; \\ \operatorname{for} j = 0; j < n_{in}; j = j + 1$ do
 $\mid \operatorname{act}_{out}[i] + = V_{ij} \operatorname{act}_{in}[j]; \\ \operatorname{end} \\ \operatorname{act}_{out}[i] = g(\operatorname{act}_{out}[i]); \\ end \\ Algorithm 1: Pseudo code for the original FC layer. memory since we block the hash neural network$

Hardware acceleration of blocked hash neural network: loop tiling

- Two-level memory hierarchy
 - On-chip SRAM: store all the real weights W (we can store weights on-chip since we compress the weights a lot)
 - On-chip register file: store only the current active real weight block

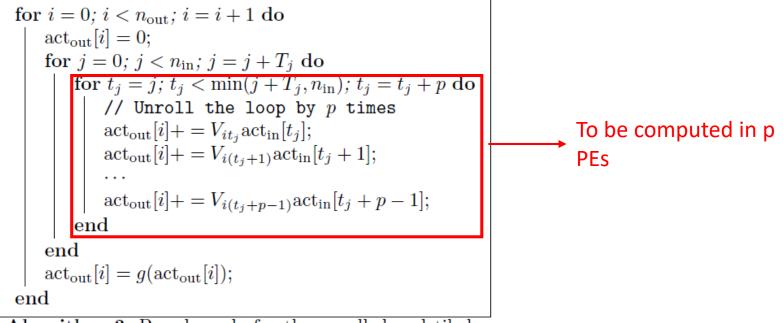


Algorithm 2: Pseudo code for the tiled FC layer.

• Loop tiling size $T_j = b/cr$, where b is the real block size and cr is the desired compression rate

Hardware acceleration of blocked hash neural network: loop unrolling

• Unroll the loop to parallelize the computation



Algorithm 3: Pseudo code for the unrolled and tiled FC layer.

- Introduction
- Related work
- Blocked hash neural network: algorithm
- Blocked hash neural network: hardware architecture
- Experiment results
- Conclusion

Hardware architecture of blocked hash neural network

- 5 pipeline stages
 - Refresh & Hash: fetch the real weights from on-chip SRAM to local register file & hash computation for index
 - XBAR & RE In_{act}: crossbar access the corresponding real weights & read the input activations
 - Mult: compute the multiplication in parallel
 - Merge: compute the accumulation
 - ReLU & WB: nonlinear computation & write back to output activation

Simplified hash function for hardware implementation

- A general hash function is complex: large area & multiple cycles
- A simplified hash function is tolerable due to our simulation results $V_{ij}^{(l)} = W_{h(i,j,l)}^{(l)} \xi(i,j,l)$
 - $h(i, j, l): N^3 \rightarrow \{1, 2, ..., b\}$ determines the mapping procedure. Uniformly distributes the index within range 1 to b:

 $h(i,j,l) = (i \oplus j \oplus l)\%b$

• $\xi(i, j, l): N^3 \rightarrow \{-1, +1\}$ removes the bias of hash inner-product. Randomly generates the ± 1 :

 $\xi(i, j, l) = LFSR\%2$

Hardware block of hash generator

- Introduction
- Related work
- Blocked hash neural network: algorithm
- Blocked hash neural network: hardware architecture

• Experiment results

Conclusion

Simulation setup

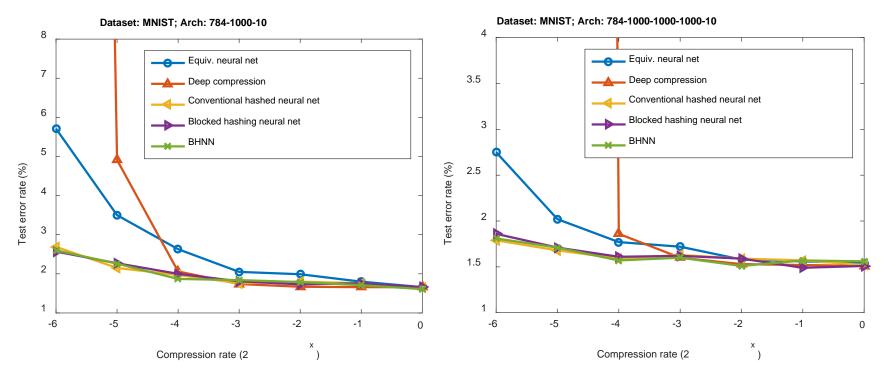
- Algorithm level verification on MATLAB
 - Verify the performance degradation under different compression rates
 - Offline train using stochastic gradient descent (SGD)
 - Numerical gradient check to guarantee the backpropagation is correct
 - Fixed point simulation of hardware architecture
- Hardware implementation by Verilog
 - Synthesize, place and routing using Xilinx Vivado
 - Prototype in Xilinx FPGA VC709
- Evaluate performance over 3 different datasets with variant neural network architecture only consisting of FC layers
 - Caltech 101 silhouettes
 - Handwritten MNIST
 - Handwritten MNIST challenging variant ROT

Algorithm-level compression performance

- Five neural network compression schemes
 - Equivalent neural net: plain neural network with equiv. size
 - Deep compression
 - Conventional hash network: with ideal hash function^[*]
 - Blocked hash network: hash network with blocked constraints
 - BHNN: hardware-mimic blocked hash neural network

Algorithm-level compression performance (cont.)

- Dataset: MNIST
- Over 2 different neural network architectures



Algorithm-level compression performance (cont.)

- Dataset: Caltech101
- Over 2 different neural network architectures

Algorithm-level compression performance (cont.)

- Dataset: ROT
- Over 2 different neural network architectures

Hardware implementation results

• Micro-architectural parameters on Xilinx VC709

Micro-architectural parameters	Value	
Parallelism p	32	
Real block size b	lock size b 64	
Quantization scheme	Q0.15 (16-bit)	
Compression ratio	1/16	
Clock freq	100MHz	

• Resource utilization

Resource	DSP	BRAM	LUT	FF
Used	32	939	17671	13271
Utilization (%)	0.89	63.88	4.08	1.53

Hardware acceleration results

• Baseline: conventional hash (w/o spatial locality) on CPU & GPU

Arch / Platform	Intel i7 6700HQ	NVIDIA GTX 960M	Xilinx VC709
784-1000-10	5.54ms / image	1.17ms / image	0.25ms / image
784-1000-1000-1000- 10	20.19ms / image	2.98ms / image	0.89ms / image
784-1000-101	6.31ms / image	1.25ms / image	0.28ms / image
784-1000-1000-1000- 101	20.96ms / image	3.05ms / image	0.92ms / image

• FPGA has a speedup of over 20x and 3~5x over CPU and GPU under various neural network architectures

- Introduction
- Related work
- Blocked hash neural network: algorithm
- Blocked hash neural network: hardware architecture
- Experiment results
- Conclusion

Conclusion

- A novel compression algorithm for neural network
 - Spatial locality for the conventional hash neural network
 - Maintain the same performance with the conventional hash neural network and outperform the "deep compression" scheme under heavy compression region
- A hardware accelerator catering for the blocked hash neural network
 - Two-level memory hierarchy taking advantage of the spatial locality
 - Hardware simplification of the general hash function
 - Achieves ~20x and ~4x speedup compared with CPU and GPU