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Introduction

* Deep Learning

— Deep Convolutional Neural Networks (ConvNets)
e Powerful image recognition
o Computation-hungry
* For energy efficiency, various accelerators are researched.
Ex) GPU, FPGA, TrueNorth from IBM
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Introduction

 Computation of convolutional layer
— 3 dimensional neurons
— Lots of multiplication and addition

Neuron|R, C, M| 7 7 7 in[z,R,C, kyow, Kol X wght|z, kyow , Kcor, M]

Z Krow Kcol
‘ R: row of output neuron
Input feature Output feature f p
maps naps C: column of output neuron
N mis | M: feature map of output neuron
\L Z: feature map of input neuron

K, ow: TOwW of convolution kernel
K o1: column of convolution kernel




Introduction

» Stochastic Computing (SC)

— Area and power efficient computing method using
frequency of 1's in stream (3/8->00101010)

— Compact multiplication
— Conversion overheads
— Extend range to [-1,1] using bipolar format: 2P(X)-1

Binary: X—~ P(X) . _ |
P(X) \PX)*P(Y) P(X Binary: X
RNG . COMP P(Y) JAND X)"PY) ) Counter -
SNG Multiplication S2B conversion

B2S conversion
RNG: Random Number Generator

SNG: Stochastic Number Generator
B2S: Binary to Stochastic
S2B: Stochastic to Binary



Previous Approach

* Fully Connected Networks [1]-[7]
— Neuron[M] = AF(}.,in|[z] * wght[z, M])
— Relatively smaller than ConvNets

» Fully Parallel ASIC [2], [6]-]9]
— Implement all hardware neurons

[1] FPGA-based stochastic neural networks implementation. 1994;

[2] Stochastic neural computation. |. computational elements. 2001;

[3] A hardware implementation of a radial basis function neural network using stochastic logic. 2015;

[4] FPGA implementation of a Deep Belief Network architecture for character recognition using stochastic computation. 2015;
[5] Using Stochastic Computing to Reduce the Hardware Requirements for a Restricted Boltzmann Machine Classifier. 2016;
[6] VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing. 2016;

[7] Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks. 2016;

[8] Designing reconfigurable large-scale deep learning systems using stochastic computing. 2016;

[9] DSCNN: Hardware-Oriented Optimization for Stochastic Computing Based Deep Convolutional Neural Networks. 2016;
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Previous Approach

» All Stochastic Computing [2], [6]-[9]
— All computations of all layers in stochastic computing

ESC Multiplication =~ SC Addition  SC Activation
' (AND/XNOR) (MUX/Adder) (FSM/Counter)
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SC IN : - MUX FSM | SCOUT
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[1] FPGA-based stochastic neural networks implementation. 1994;

[2] Stochastic neural computation. |. computational elements. 2001;

[3] A hardware implementation of a radial basis function neural network using stochastic logic. 2015;

[4] FPGA implementation of a Deep Belief Network architecture for character recognition using stochastic computation. 2015;
[5] Using Stochastic Computing to Reduce the Hardware Requirements for a Restricted Boltzmann Machine Classifier. 2016;
[6] VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing. 2016;

[7] Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks. 2016;

[8] Designing reconfigurable large-scale deep learning systems using stochastic computing. 2016;

[9] DSCNN: Hardware-Oriented Optimization for Stochastic Computing Based Deep Convolutional Neural Networks. 2016;



Problems and Challenges

All-SC: Fundamentally unscalable architecture

— Implement all neurons in hardware? Not scalable for recent
networks

— 665,784,864 multiplications (AND gates) for AlexNet
* lum2 AND on 45nm tech. - 666mm?2 for AND gates only!

All-SC: Incompatible with reusing neurons
— Due to very high amount of intermediate SC data

— Exponential memory and bandwidth consumption
(3/8>011,;,,>00101010)

Minimize B2S / S2B conversion overhead

How to significantly reduce SC latency without
compromising on accuracy?
— Long latency decreases energy efficiency




Our Solution to Problems

» Unscalable architecture & incompatibility with
neuron reuse
-> Tile-parallel architecture,
Binary-Interlaced SC (BISC)

= Minimize conversion overhead
- Optimized bit-parallel SC-MAC design

= Long latency for accuracy
- Hybrid Layer Composition



Main Contributions

- Tile-Parallel BISC Architecture

= The first tile-parallel SC-architecture
— Can support convolution layers of any size

= Binary-Interlaced SC (BISC) o
— Conversion before/after multiplication " |
— Addition using (binary-)accumulator olk rst |

Input feature X Output feature

maps naps

= Parallelism along all dimensions of
output neurons (R, C, M)
— Critical path depends on Z-K-K only

— Thus, scalable to any T X T X Ty, Size ~L Weights II
Neuron(R,C,M) = pmmn

S S S S ooy | B

Z Krow Kco1 SL SNGs
SL: Stream Length

Te X Tp X Ty
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Main Contributions

- SC-MAC Design Optimization

* Huge counter (S2B) overhead
— Exploit bit-parallelism — compute all SC-bits together
* Requires parallel B2S conversion (i.e., SNGS)
 Approximate Parallel Counter nearly halves
counter area

Accumulative parallel counter

XNOR  ~ 1+ “T'GN]
) N W
16 [ X— . . | ‘
r—— gj 16 16 X ‘16 : N Parallel | 161
igned _ Accumulator —— N : - —— Accumulator —
w9 multiplier Accumulator}‘ W iR | W—t counter |
I
XNOR -
clk, rst clk, rst

clk, rst

| 15,6 |
/ \ Y& Y

(a) Fixed-point bMAC b) \Ial ve sMAC (c) 64b -par. 51\1AC (d) 128b-par. sMAC (e) 128b-par. Approx. sMAC

O Unused Relative area composition with color coding



Main Contributions

- Hybrid Layer Composition

* Final decision made at fully connected (F.C.) layer
— Computation error directly affect the recognition rate

» Hybrid Layer Composition reduces
necessary stream length by 8X (1024—128)

N
/ \ MNIST rec. rate full-SC —+—hybrid < hybrid-approx

i>

\ / 70%
- 64 128 256 512 1024  float

Conv. Conv. FC. FC. SL: Stream Length ' "




Experimental Setup

- Computation Element and Tile Synthesis

» Synthesis and stream length setting
— HDL implementation
— Synopsys Design Compiler
— TSMC 45nm tech.
— Stream length (SL) setto 128

 Compared with same Ty X T, X Ty, architecture
— 16 bit precision fixed point binary MAC
— 64Db-par. sSMAC, 128b-par. approx. sSMAC
« 3 cases of B2S conversion (SNG)
 Compared with state-of-the-art neural
network accelerators
— Without SNG



Results

- Comparison with fixed point binary

» Easily scalable depending on area budget
— Area is linear to #Elements

— B2S conversion overheads decrease with the
large tile size

= With better SNGs, 20% better,

» Ideally (w/o SNG), 44% smaller area-delay
produict compared to fixed point binary

Output feature
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Results

- Comparison with State-of-the-art DNN processors

2923 E .
) Performance comparison normalized to ours

—
Q
o

o -
=
I
[

0.005
I
0.0006

o o
o - o
S o o]
oo o
Area Power GOPS GOPS/mm? GOPS/W
MWSCAS'12 ISSCC'15 ASPLOS'14 GLSVLSI'15 W Arxiv'l5 DAC'16 M Proposed (128b-SC approx.)
Binary SC
Tech. Scope for area & power

» Best MAC throughput (per area) s maram
65nm | Total chip

= High MAC throughput per power [ [ NFU™ only

_ - 65nm | SoP (~ MAC) units only
- Operathn per energy 65nm | One neuron

45nm | One neuron with 200 mputs
45nm | MAC array (size: 8x8x8)




Conclusion

= Present the first SC-ConvNet accelerator that Is
fully scalable thanks to Binary-Interlaced SC.

* Propose highly optimized bit-parallel SC-MAC
design, which minimizes conversion overhead.

* Propose Hybrid Layer Composition, which
Improves runtime-accuracy trade-off by 8X.
(1024->128 for MNIST)

» Achieve 1.83X perf./area compared to state-of-
the-art (DAC'16) SC deep learning accelerator.



Thank you for
listening my presentation
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