
Scalable Stochastic-Computing Accelerator 
for Convolutional Neural Networks
Hyeonuk Sim¹, Dong Nguyen¹, Jongeun Lee¹ and Kiyoung Choi²

¹UNIST, Ulsan, South Korea
²Seoul National University, Seoul, South Korea

1

Renew: Reconfigurable and
Neuromorphic Computing Lab



Outline

▪ Introduction

▪ Previous Approach

▪ Problems and Challenges

▪ Main Contributions/Solutions

▪ Experimental Results

▪ Conclusion

2



Introduction
▪ Deep Learning

– Deep Convolutional Neural Networks (ConvNets)
• Powerful image recognition
• Computation-hungry
• For energy efficiency, various accelerators are researched.

Ex) GPU, FPGA, TrueNorth from IBM
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Introduction
▪ Computation of convolutional layer

– 3 dimensional neurons
– Lots of multiplication and addition
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Introduction
▪ Stochastic Computing (SC)

– Area and power efficient computing method using 
frequency of 1's in stream (3/800101010)

– Compact multiplication
– Conversion overheads
– Extend range to [-1,1] using bipolar format: 2P(X)-1
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Previous Approach
▪ Fully Connected Networks [1]-[7]

– 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑀𝑀] = 𝐴𝐴𝐴𝐴(∑𝑍𝑍 𝑖𝑖𝑁𝑁[𝑧𝑧] ∗ 𝑤𝑤𝑤𝑤ℎ𝑡𝑡[𝑧𝑧,𝑀𝑀])
– Relatively smaller than ConvNets

▪ Fully Parallel ASIC [2], [6]-[9]
– Implement all hardware neurons
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[1] FPGA-based stochastic neural networks implementation. 1994;
[2] Stochastic neural computation. I. computational elements. 2001;
[3] A hardware implementation of a radial basis function neural network using stochastic logic. 2015;
[4] FPGA implementation of a Deep Belief Network architecture for character recognition using stochastic computation. 2015;
[5] Using Stochastic Computing to Reduce the Hardware Requirements for a Restricted Boltzmann Machine Classifier. 2016;
[6] VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing. 2016;
[7] Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks. 2016;
[8] Designing reconfigurable large-scale deep learning systems using stochastic computing. 2016;
[9] DSCNN: Hardware-Oriented Optimization for Stochastic Computing Based Deep Convolutional Neural Networks. 2016;



Previous Approach
▪ All Stochastic Computing [2], [6]-[9]

– All computations of all layers in stochastic computing
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[9] DSCNN: Hardware-Oriented Optimization for Stochastic Computing Based Deep Convolutional Neural Networks. 2016;



Problems and Challenges
▪ All-SC: Fundamentally unscalable architecture

– Implement all neurons in hardware?  Not scalable for recent 
networks

– 665,784,864 multiplications (AND gates) for AlexNet
• 1um² AND on 45nm tech.  666mm² for AND gates only!

▪ All-SC: Incompatible with reusing neurons
– Due to very high amount of intermediate SC data
– Exponential memory and bandwidth consumption

(3/8011𝑏𝑏𝑏𝑏𝑏𝑏00101010)

▪ Minimize B2S / S2B conversion overhead

▪ How to significantly reduce SC latency without 
compromising on accuracy?
– Long latency decreases energy efficiency
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Our Solution to Problems
▪ Unscalable architecture & incompatibility with 

neuron reuse
 Tile-parallel architecture, 
Binary-Interlaced SC (BISC)

▪ Minimize conversion overhead
 Optimized bit-parallel SC-MAC design

▪ Long latency for accuracy
 Hybrid Layer Composition

9



Main Contributions
- Tile-Parallel BISC Architecture
▪ The first tile-parallel SC-architecture

– Can support convolution layers of any size

▪ Binary-Interlaced SC (BISC)
– Conversion before/after multiplication
– Addition using (binary-)accumulator

▪ Parallelism along all dimensions of 
output neurons (R, C, M)
– Critical path depends on Z-K-K only
– Thus, scalable to any 𝑻𝑻𝑹𝑹×𝑻𝑻𝑪𝑪×𝑻𝑻𝑴𝑴 size
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▪ Huge counter (S2B) overhead
– Exploit bit-parallelism → compute all SC-bits together

• Requires parallel B2S conversion (i.e., SNGs)

▪ Approximate Parallel Counter nearly halves
counter area 
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Main Contributions
- SC-MAC Design Optimization

≈
Relative area composition with color coding

Accumulator Accumulator Accumulator⋮



𝑆𝑆𝑆𝑆: 𝑆𝑆𝑡𝑡𝑁𝑁𝑁𝑁𝑓𝑓𝑐𝑐 𝑆𝑆𝑁𝑁𝑁𝑁𝑤𝑤𝑡𝑡ℎ

MNIST rec. rate

Main Contributions
- Hybrid Layer Composition

▪ Final decision made at fully connected (F.C.) layer
– Computation error directly affect the recognition rate

▪ Hybrid Layer Composition reduces 
necessary stream length by 8X (1024→128)

12F.C. F.C.Conv.Conv.



Experimental Setup
- Computation Element and Tile Synthesis
▪ Synthesis and stream length setting

– HDL implementation
– Synopsys Design Compiler
– TSMC 45nm tech.
– Stream length (𝑆𝑆𝑆𝑆) set to 128

▪ Compared with same 𝑻𝑻𝑹𝑹 × 𝑻𝑻𝑪𝑪 × 𝑻𝑻𝑴𝑴 architecture
– 16 bit precision fixed point binary MAC
– 64b-par. sMAC, 128b-par. approx. sMAC

• 3 cases of B2S conversion (SNG)

▪ Compared with state-of-the-art neural 
network accelerators
– Without SNG
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Results
- Comparison with fixed point binary
▪ Easily scalable depending on area budget

– Area is linear to #Elements
– B2S conversion overheads decrease with the 

large tile size
▪ With better SNGs, 20% better,
▪ Ideally (w/o SNG), 44% smaller area-delay 

product compared to fixed point binary
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Normalized area-delay product
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Results
- Comparison with State-of-the-art DNN processors

▪ Best MAC throughput (per area)
▪ High MAC throughput per power

= Operation per energy
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Conclusion
▪ Present the first SC-ConvNet accelerator that is 

fully scalable thanks to Binary-Interlaced SC.

▪ Propose highly optimized bit-parallel SC-MAC 
design, which minimizes conversion overhead.

▪ Propose Hybrid Layer Composition, which 
improves runtime-accuracy trade-off by 8X. 
(1024128 for MNIST)

▪ Achieve 1.83X perf./area compared to state-of-
the-art (DAC'16) SC deep learning accelerator.
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Thank you for
listening my presentation

QnA?
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