Reservoir and Mixer Constrained Scheduling for Sample Preparation on Digital Microfluidic Biochips

Authored by:

Varsha Agarwal ${ }^{1}$, Ananya Singla ${ }^{1}$, Mahammad Samiuddin ${ }^{2}$, Sudip Roy ${ }^{1}$, Tsung- Yi Ho 3, Indranil Sengupta² ${ }^{\text {and }}$ Bhargab B. Bhattacharya ${ }^{4}$
${ }^{1}$ CoDA Laboratory, Dept. of CSE, IIT Roorkee, India
${ }^{2}$ Dept. of CSE, IIT Kharagpur, India
${ }^{3}$ Dept. of CS, National Tsing Hua University, Hsinchu, Taiwan
${ }^{4}$ Advanced Computing and Microelectronics Unit, ISI Kolkata, India
Presented by: Varsha Agarwal, Department of Computer Science and Engineering,
Indian Institute of Technology Roorkee, India
In the 22nd Asia and South Pacific Design Automation Conference (ASP-DAC) 2017

Outline of the Talk

- Introduction
- Basic Preliminaries
- Prior Work
- Motivation
- Reservoir Constrained Optimal Scheduling
- Reservoir and Mixer Constrained Scheduling
- Problem Formulation
- Proposed Scheme
- Simulation Results
- Conclusions and Future Work

Introduction

- Microfluidic biochip, also termed as lab-on-a-chip (LoC), automates the repetitive work in laboratory by replacing complex equipment with compact integrated systems

Microfluidic Biochip

Digital Microfluidic Biochip (DMFB)

- It is based on the principle of electrowetting-on-dielectric (EWOD) [Chakrabarty et al., CRC Press, 2007]
- It manipulates droplets of small size

Figure 1: Schematic view of a DMF biochip with two mixers and four reservoirs

Basic Preliminaries

- Sample Preparation

- Mixing of two or more fluids to get desired concentration

- Mixing tree

- The step-wise processing for the generation of target concentration from the supply of input fluids is represented by a binary mixing tree

Figure 2: MinMix mixing tree for the mixture $(A: B: C)=(5: 4: 7)$

Basic Preliminaries (cont.)

- Reservoir Switching

- At some instance of time, it is required to unload the previous reagent, wash the reservoir and load this reservoir with new reagent. We refer this process of unloading, washing and loading as 'switching'
- Reservoir switching takes more time than mixing [Rensch et al., Lab Chip, 2014]

Loading of
fluid x_{1}

(a)

(b)

(c)

Loading of fluid x_{2}

(d)

Figure 3: Schematic view of the mechanical process of (a) loading, (b) unloading, (c) washing, and (d) reloading of the reservoir at a dispenser

Prior Work: Mixing algorithms

- MinMix [Thies et al., Natural Computing, 2008]
- Scans N d-bits of the binary fractions corresponding to the target CFs N reagents from right to left
- RMA [Roy et al., VLSID, 2011 \& Roy et al., TODAES, 2015]
- Based on fractional decomposition of algebraic expression of a target ratio
- Minimize reagent usage, droplet transportation time and storage requirement
- CoDOS [Liu et al., ICCAD, 2013]
- Generates a recipe matrix that contains the CF of each reagent fluid in binary representation
- Find out the rectangle within the recipe matrix for possible dilution operations that can be shared
- Droplet sharing in the mixing tree

Prior Work (cont.): Scheduling algorithm

- Optimal Scheduling [Luo and Akella, TASE, 2011]
- It schedules the given mixing tree in the minimum total mixing (completion) time
- Optimal scheduling algorithm work as follows:
- Given a following mixing tree to be scheduled with 2 mixers and no reservoir constrained

Prior Work (cont.)

- Optimal Scheduling [Luo and Akella, TASE, 2011]

At $t=1$

At $\mathrm{t}=2$

$$
\text { At } t=3
$$

Motivation: Why Reservoir Switching Required?

- DMFB is small in size, so there is limited amount of resources that can be placed on it
- For real-life applications, while performing automated sample preparation we need more reagents than the number of reservoirs available

Reservoir Constrained Optimal Scheduling (ROS)

- Modified optimal scheduling considering reservoir as a constrained is called Reservoir Constrained Optimal Scheduling (ROS)
- The reservoirs are loaded or switched with the required reagents in level wise order

ROS Example

- Given a following CoDOS tree with target ratio $500: 300: 1000: 500: 100: 100: 25$: 2475 (approximated as $6: 4: 13: 6: 1: 1: 1: 32$ in 64 -scale). Consider the DMFB architecture given in Fig. 1 with 2 mixers and 4 reservoirs

Schedule for $\mathrm{N}_{\mathrm{M}}=2$ and
$\mathrm{N}_{\mathrm{R}}=4$

ROS Example (cont.)

$$
\text { At } t=0
$$

Probable list of nodes

1	2	4

Reservoirs

Available Mixers

ROS Example (cont.)

$$
\text { At } t=1
$$

Probable list of nodes

1	2	4

Reservoirs

```
x5
x3
x7
x6
```

Available Mixers

ROS Example (cont.)

After $\mathbf{t}=1$
Probable list of nodes
$3 \quad 4$

Reservoirs

```
x5
x3
x7
x6
```

Available Mixers

ROS Example (cont.)

At $\mathbf{t}=\mathbf{2}$
Probable list of nodes

Number of switching required = 1

Reservoirs

```
x4
x1
x7
x6
```

Available Mixers

ROS Example (cont.)

After $\mathbf{t}=\mathbf{2}$
Probable list of nodes
Number of switching required =1

Reservoirs

```
x4
x1
x7
x6
```

Available Mixers

ROS Example (cont.)

At $\mathbf{t}=\mathbf{3}$
Probable list of nodes \square 7
Number of switching required $=2$

ROS Example (cont.)

$$
\text { At } t=4
$$

Number of switching required = 2

Reservoirs
x2
x3
x7
x6

Available Mixers

ROS Example (cont.)

$$
\text { At } t=5
$$

Number of switching required $=2$

Reservoirs
x2
x3
x7
x6

Available Mixers

ROS Example (cont.)

$$
\text { At } t=6
$$

Probable list of nodes

Number of switching required $=3$

Reservoirs
x8
x3
x7
x6

Available Mixers

ROS Example (cont.)

Total Mixing time $=6$
Number of switching required $=3$

Reservoir and Mixer Constrained Scheduling (RMS)

- In ROS, the priority is given to reducing the mixing time rather than reservoir switching
- But reservoir switching takes more time than mixing [Rensch et al., Lab Chip, 2014]
- In RMS, reducing reservoir switching is main objective

Problem Formulation- RMS

- Inputs: Mixing tree (T), number of mixers available ($\mathrm{N} м$) and number of reservoirs available (N_{R})
- Output: Scheduled mixing tree and total mixing time (Tm_{m})
- Constraints:
- Number of reservoirs used at any time t, Nr
- Number of mixers used at any time t, Nm
- Objectives:
- Minimize the number of switching (S)
- Minimize the total mixing time (Tm)

Proposed Scheme - RMS

1. Approximate given target ratio at accuracy level d
2. Create a dynamic list $\left(D=\left\{x_{i}\left(c_{i}\right)\right\}\right)$, where x_{i} represents the reagent i and $c / 2^{d}$ is the target concentration of x_{i}
3. The dynamic list is sorted in decreasing order of (c_{i})'s and in which the reagent's priorities are set in increasing order
4. A probable list is created which contains the intermediate nodes that can be scheduled at the current time

RMS (cont.)

- For each node and current reservoir following cases may occur:

Case -1 - Both Reservoirs are empty.

- If reagents of current node is not loaded, then load them

Case -2 • Reservoirs are loaded.

- Switch the reagents, if it has high priority

RMS - example

- Given a following CoDOS tree with target ratio $500: 300: 1000: 500: 100: 100: 25$: 2475 (approximated as $6: 4: 13: 6: 1: 1: 1: 32$ in 64 -scale)
- Consider the DMFB architecture with 2 mixers and 4 reservoirs given below

RMS - example

$$
\text { At } t=0
$$

Dynamic sorted list

$x 8$	$x 3$	$x 1$	$x 4$	x_{2}	$x 5$	$x 6$	$x 7$
32	13	6	6	4	1	1	1

Probable list of nodes

1	2	4

Reservoirs

Available Mixers

RMS - example

$$
\text { At } t=1
$$

Dynamic sorted list

$x 8$	$x 3$	x_{1}	x_{4}	x_{2}	x_{5}	x_{6}	$x 7$
32	13	6	6	4	1	1	1

Probable list of nodes

```
1/Z}
```

Reservoirs

```
x6
x7
```

Available Mixers

RMS - example

$$
\text { At } t=1
$$

Dynamic sorted list

x 8	x 3	x 1	x 4	x 2	x 5	x 6	x 7
32	13	5	6	4	1	1	1
		0	0			0	0

Probable list of nodes

Reservoirs
x6
x7
x1
x4

Available Mixers

RMS - example

$$
\text { After } \mathbf{t}=1
$$

Dynamic sorted list

$x 8$	$x 3$	$x 2$	$x 5$	$x 1$	$x 4$	$x 6$	$x 7$
32	13	4	1	0	0	0	0

Probable list of nodes

1 6

Reservoirs
x6
x7
x1
x4

Available Mixers

RMS - example

$$
\text { At } t=2
$$

Dynamic sorted list
Number of switching required $=1$
Probable list of nodes

Reservoirs

```
x5
x3
x2
x8
```

Available Mixers

RMS - example

After $\mathbf{t}=\mathbf{2}$
 Dynamic sorted list

Number of switching required $=1$

x 8	x 2	x 1	x 3	x 4	x 5	x 6	x 7
32	4	0	0	0	0	0	0

Probable list of nodes

3

Reservoirs

```
x5
x3
x2
x8
```

Available Mixers

RMS - example

$$
\text { At } t=3 \quad \text { Dynamic sorted list }
$$

Number of switching required $=1$

x 8	x 2	x 1	x 3	x 4	x 5	x 6	x 7
32	4	0	0	0	0	0	0

Probable list of nodes

Reservoirs

```
x5
x3
x2
x8
```

Available Mixers

RMS - example

$$
\text { At } t=4 \quad \text { Dynamic sorted list }
$$

Number of switching required $=1$

x 8	x 2	x 1	x 3	x 4	x 5	x 6	x 7
32		0	0	0	0	0	0
	0						

Probable list of nodes
F 7

Reservoirs

```
x5
x3
x8
```

Available Mixers

RMS - example

$$
\text { At } t=5 \quad \text { Dynamic sorted list }
$$

Number of switching required $=1$

x 8	x 1	x 2	x 3	x 4	x 5	x 6	x 7
32	0	0	0	0	0	0	0

Probable list of nodes

Reservoirs

```
x5
x3
x2
x8
```

Available Mixers

RMS - example

$$
\text { At } t=6 \quad \text { Dynamic sorted list }
$$

Number of switching required $=1$

$x 8$	$x 1$	$x 2$	$x 3$	$x 4$	$x 5$	$x 6$	$x 7$
32	0	0	0	0	0	0	0

Probable list of nodes

Reservoirs

```
x5
x3
x2
x8
```

Available Mixers

RMS - example

$$
\text { At } t=7 \quad \text { Dynamic sorted list }
$$

Number of switching required $=1$

$x 8$	$x 1$	$x 2$	$x 3$	$x 4$	$x 5$	$x 6$	$x 7$
32	0	0	0	0	0	0	0
0							

Probable list of nodes

Reservoirs

```
x5
x3
x2
x8
```

Available Mixers

RMS - example

Total Mixing time required $=7$
Number of switching required $=1$

Simulation Results

Comparison of number of switching by RMS and ROS for CoDOS, MinMix, RMA mixing Trees

Test data set (10,000 ratios): http://faculty.iitr.ac.in/~sudiproy.fcs/codalab/research/microfluidics.html

Simulation Results (cont.)

Comparison of mixing time by RMS and ROS for CoDOS, MinMix, RMA mixing Trees

Test data set (10,000 ratios): http://faculty.iitr.ac.in/~sudiproy.fcs/codalab/research/microfluidics.html

Simulation Results (cont.)

Real life Bioprotocols Ratio used (Approximated ratio)	Mixing Time, T_{m}						Number of Switching, S						Number of Storage, q					
	MM [4]		RMA [8]		CoDOS [5]		MM [4]		[RMA [8]		CoDOS [5]		MM [4]		\|RMA [8]		CoDOS [5]	
	RMS		RMS	ROS	RMS	ROS	RMS	ROS			RMS	ROS	RMS				RMS	ROS
$\begin{gathered} \hline \text { Plasmid DNA [15] } \\ \text { 20:10:2:2:2:1:53 } \\ (28: 14: 3: 3: 3: 1: 76) \end{gathered}$	9	9	9	9	7	7	1	5	1	2	1	4	1	1	1	1	1	1
$\begin{gathered} \hline \text { Splinkerette PCR [16] } \\ 40: 10: 1: 1: 48 \\ (51: 13: 1: 1: 62) \end{gathered}$	7	7	7	7	7	7	1	3	1	3	1	3	0	0	0	0	1	1
Touchdown PCR [17] 500:300:1000:500:100:100:25:2475 $(13: 8: 26: 13: 3: 3: 1: 61)$	11	10	14	12	8	8	5	5	3	6	4	2	3	1	2	3	3	2
$\begin{gathered} \hline \text { Silver- Restriction Digest [17] } \\ 70: 10: 10: 2: 2: 6 \\ (90: 13: 13: 3: 3: 6) \end{gathered}$	9	9	12	10	7	7	2	5	1	3	1	1	3	1	2	2	1	1
Molecular barcodes - PCR [17] 100:20:20:20:20:50:50:100:4:616 $(13: 3: 3: 3: 3: 6: 6: 13: 1: 77)$	12	12	15	14	9	9	5	6	4	10	2	5	4	3	2	4	3	2

Comparative results of RMS over ROS for some example ratios used in real-life bioprotocols

Conclusions and Future Work

- Reservoir switching is required when number of reagents are more than reservoirs
- Reservoir switching requires more time than other fluidic operations
- RMS can reduce the number of switching as compared to ROS schemes with slight increase in mixing time
- As a future work, reducing the storage requirement can also be added to the optimization criteria

References

[1] K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis, Testing and Reconfiguration Techniques. CRC Press, 2007.
[2] Y.-L. Hsieh, T.-Y. Ho, and K. Chakrabarty, "A Reagent-Saving Mixing Algorithm for Preparing Multiple-Target Biochemical Samples Using Digital Microfluidics," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 31, no. 11, pp. 1656-1669, 2012.
[3] S. Roy, B. B. Bhattacharya, and K. Chakrabarty, "Optimization of Dilution and Mixing of Biochemical Samples using Digital Microfluidic Biochips," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 29, no. 11, pp. 1696-1708, 2010.
[4] W. Thies, J. P. Urbanski, T. Thorsen, and S. Amarasinghe, "Abstraction Layers for Scalable Microfluidic Biocomputing," Natural Computing, vol. 7, no. 2, pp. 255-275, 2008.
[5] C.-H. Liu, H.-H. Chang, T.-C. Liang, and J.-D. Huang, "Sample Preparation for Many-Reactant Bioassay on DMFBs using Common Dilution Operation Sharing," in Proc. of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2013, pp. 615-621.

References

[6] S. Kumar, S. Roy, P. P. Chakrabarti, B. B. Bhattacharya, and K. Chakrabarty, "Efficient Mixture Preparation on Digital Microfluidic Biochips," in Proc. of the IEEE International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS), 2013, pp. 205-210.
[7] S. Roy, B. B. Bhattacharya, S. Ghoshal, and K. Chakrabarty, "Theory and Analysis of Generalized Mixing and Dilution of Biochemical Fluids Using Digital Microfluidic Biochips," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 11, no. 1, pp. 2.1-2.33, 2014.
[8] S. Roy, P. P. Chakrabarti, S. Kuamr, K. Chakrabarty, and B. B. Bhattacharya, "Layout-Aware Mixture Preparation of Biochemical Fluids on Application-Specific Digital Microfluidic Biochips," ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 20, no. 3, pp. 45.1-45.34, 2015.
[9] F. Su and K. Chakrabarty, "Architectural-Level Synthesis of Digital Microfluidicsbased Biochips," in Proc. of the IEEE/ACM International Conference on Computer- Aided Design (ICCAD), 2004, pp. 223-228.
[10] L. Luo and S. Akella, "Optimal Scheduling of Biochemical Analyses on Digital Microfluidic Systems," IEEE Transactions on Automation Science and Engineering (TASE), vol. 8, no. 1, pp. 216-227, 2011.
[11] D. Grissom and P. Brisk, "Path scheduling on Digital Microfluidic Biochips," in Proc. of the IEEE/ACM Design Automation Conference (DAC), 2012, pp. 26-35.

References

[12] S. Srigunapalan, I. A. Eydelnant, C. A. Simmons, and A. R. Wheeler, "A Digital Microfluidic Platform for Primary Cell Culture and Analysis," Lab Chip, vol. 12, pp. 369-375, 2012.
[13] P. Y. Paik, V. K. Pamula, M. G. Pollack, and R. B. Fair, "Electrowetting-Based Droplet Mixers for Microfluidic Systems," Lab Chip, vol. 3, no. 1, pp. 28-33, 2003.
[14] C. Rensch, S. Lindner, R. Salvamoser, S. Leidner, C. Bold, V. Samper, D. Taylor, M. Baller, S. Riese, P. Bartenstein, C. Wangler, and B. Wangler, "A Solvent Resistant Lab-on-Chip Platform for Radiochemistry Applications," Lab Chip, vol. 14, pp. 2556-2564, 2014.
[15] Preparation of Plasmid DNA by Alkaline Lysis with SDS: Minipreparation, Cold Spring Harb Protocols, http://cshprotocols.cshlp.org/content/2006/1/pdb.prot4084.citation, 2006.
[16] A. G. Uren, H. Mikkers, J. Kool, L. van der Weyden, A. H. Lund, C. H. Wilson, R. Rance, J. Jonkers, M. van Lohuizen, A. Berns, and D. J. Adams, "A High- Throughput Splinkerette-PCR Method for the Isolation and Sequencing of Retroviral Insertion Sites," Nature Protocols, vol. 4, no. 5, pp. 789-798, 2009.
[17] OpenWetWare, 2009, http://openwetware.org/wiki/Main Page.

THANK YOU

Any Questions?

