

UNIVERSITÄT LINZ

Exact Routing for Micro-Electrode-Dot-Array Digital Microfluidic Biochips

Oliver Keszocze^{1,4}, Zipeng Li², Andreas Grimmer³ Robert Wille^{3,4}, Krishnendu Chakrabarty² and Rolf Drechsler^{1,4}

- ¹ University of Bremen, Germany
- ² Duke University, Durham, USA
- ³ Johannes Kepler University Linz, Austria
- ⁴ DFKI GmbH, Germany

Outline

- Motivation and background
- MEDA biochips
- Routing Problem & SMT Formulation
- Experimental Results
- Conclusions & Outlook

Universität Bremen - Computer Architecture

Motivation

Conventional Biochemical Analyzer

Higher throughput, minimal human intervention, smaller sample/reagent consumption, higher sensitivity, increased productivity

Lab-on-a-chip for CLINICAL DIAGNOSTICS

UNIVERSITÄT LINZ

20nl sample

Conventional DMFBs

Micro-Electrode-Dot-Array

Images taken from: Li et al. *High-level synthesis for micro-electrode-dot-array digital microfluidic biochips*. DAC'16.

UNIVERSITÄT LINZ

Universität Bremen - Computer Architecture Duke

Shape Change of Droplets

Diagonal Movements

Universität Bremen - Computer Architecture

JOHANNES KEPLER

Complexity of Routing

Theorem 1 Routing on classical DMFBs is NP-complete.

Conjecture 1 Routing on MEDA DMFBs without diagonal movement is NP-complete.

Conjecture 2 Routing on MEDA DMFBs is NP-complete.

Proposed Approach

- Solving the routing problem is inherently difficult
- Our approach:
 - Model the problem at hand
 - Let a powerful solving engine produce a solution

Modelling of MEDA DMFBs

- The model automatically ensures correctness of the solution
- The solver can choose sophisticated computation methods to find the solution
- The model can easily be extended to respect further aspects – no new algorithm needs to be created

UNIVERSITÄT LINZ

General I dea

Routing problem formulated as sequence of decision problems This approach gauantees minimality T=1T=n T=n noEncode the routing problem using Satisfiability Modulo Theories (SMT) Does there exist a routing over T time steps?

Universität Bremen - Computer Architecture

SMT Encoding: Variables

Universität Bremen - Computer Architecture

SMT Encoding: Constraints

Fix droplet on grid: $0 \le x_d^{\uparrow,t}, x_d^{\downarrow,t} \le W$ $0 \le y_d^{\uparrow,t}, y_d^{\downarrow,t} \le H$

Prevent flipping: $x_d^{\uparrow,t} \ge x_d^{\downarrow,t} \land y_d^{\uparrow,t} \ge y_d^{\downarrow,t}$

Source/Target config: $p_d^1 = p_d^* \land p_d^T = p_d^\dagger$

Constraints (cont.)

Droplet Movement

$$\begin{aligned} \left| x_d^{\uparrow,t} - x_d^{\uparrow,t-1} \right| &\leq 1 \land \left| x_d^{\downarrow,t} - x_d^{\downarrow,t-1} \right| \leq 1 \land \\ \left| y_d^{\uparrow,t} - y_d^{\uparrow,t-1} \right| &\leq 1 \land \left| y_d^{\downarrow,t} - y_d^{\downarrow,t-1} \right| \leq 1 \end{aligned}$$

Droplet Shapes

$$\bigvee_{(w,h)\in Shapes_d} x_d^{\downarrow,t} + w = x_d^{\uparrow,t} \wedge y_d^{\downarrow,t} + h = y_d^{\uparrow,t}$$

Fluidic Constraints

Images taken from: Su et al. *Droplet Routing in the Synthesis of Digital Microfluidic Biochips*. DATE'06.

Fluidic Constraints (cont.)

ter JYU JOHANNES KEPLER UNIVERSITÄT LINZ

Benchmarks

Influence of Droplet Shape

	Exact conventional DMFB [1]		Restricted shape		Unrestricted shape	
Name	max T	avg. T	max T	avg. T	max T	avg. T
in-vitro 1	18.00	11.20	18.00	11.67	18.00	11.67
in-vitro 2	16.00	10.07	16.00	9.64	16.00	9.64
protein 1	20.00	15.28	20.00	15.28	20.00	15.28
protein 2	20.00	9.53	20.00	9.49	18.67	9.44

Shape restriction (width, height):

(3,3), (3,4) (4,3) (4,4)

No diagonal movement

[1] Keszocze et al. *Exact Routing for Digital Microfluidic Biochips With Temporary Blockages*. ICCAD'14.

UNIVERSITÄT LINZ

Influence of Diagonal Movement

	E> conve DMI	kact entional FB[1]	Unrestricted shape + diagonal movement		
Name	max T	avg. T	max T	avg. T	
in-vitro 1	18.00	11.20	15.00	9.09	
in-vitro 2	16.00	10.07	11.67	7.12	
protein 1	20.00	15.28	17.67	12.47	
protein 2	20.00	9.53	16.67	7.54	

[1] Keszocze et al. *Exact Routing for Digital Microfluidic Biochips With Temporary Blockages*. ICCAD'14.

Comparison to previous Work

	Approxin	nation [1]	Heuris	tic [2]	Proposed	
Name	max T	avg. T	max T	avg. T	max T	avg. T
in-vitro 1	12.33	8.20	15.33	9.55	15.00	9.09
in-vitro 2	10.67	6.33	11.33	7.29	11.67	7.12
protein 1	15.67	9.36	18.67	12.30	17.67	12.47
protein 2	12.33	5.25	16.67	7.84	16.67	7.54

[1] Li et al. *High-level synthesis for micro-electrode-dot-array digital microfluidic biochips*. DAC'16.

[2] Chen et al. Droplet routing in high-level synthesis of configurable digital microfluidic biochips based on microelectrode dot array architecture. BioChip Journal, 5(4), 2011

Conclusion Outlook

- Approach for exact routing for MEDA DMFBs, i.e. minimality is guaranteed
- Complexity handled through efficient solving engines
- Formal model for droplet movement and shape changing
- Parameterized
 - o fluidic constraints
 - o blockage distance

 \rightarrow can easily be adjusted to new situations

Outlook

- Support for multiple droplet velocities (already implemented; not presented)
- There is a need for dedicated MEDA benchmarks
- Add support for non-rectangular shapes

Thank you for your attention!

Questions?

JOHANNES KEPLER UNIVERSITÄT LINZ