# Majority Logic Circuits Optimization by Node Merging

Chun-Che Chung, Yung-Chih Chen, Chun-Yao Wang, <mark>Chia-Cheng Wu</mark> National Tsing Hua University, Yuan Ze University Taiwan

#### Introduction

- Majority function
- Quantum-dot Cellular Automata
- Preliminaries
- Problem formulation
- Node merging approach
  - Noncontrolling pair
  - MA computation
- Experimental results
- Conclusions

#### Introduction

- Majority function
- Quantum-dot Cellular Automata
- Preliminaries
- Problem formulation
- Node merging approach
  - Noncontrolling pair
  - MA computation
- Experimental results
- Conclusions

# **Majority function**

- A majority function is an odd-input function that has the output value of v if and only if more than half of the inputs are assigned the value of v
- Majority-Inverter-Graph (MIG) is a directed, acyclic graph that represents a logic network with three-input majority gates and inverters [1]



[1] L. Amarú, P.-E Gaillardon, and G. De. Micheli, "Majority-Inverter Graph: A Novel Data-Structure and Algorithm for Efficient Logic Optimization," *in Proc. DAC*, 2014

# Quantum-dot Cellular Automata

 Quantum-dot Cellular Automata (QCA) is the lowerpower nanotechnology that is considered as a replacement candidate for CMOS



(a) Binary information of a QCA cell.

<sup>(</sup>b) QCA wire

# Quantum-dot Cellular Automata

 The underlying QCA logic devices include QCA inverter, and QCA majority gate.



#### Introduction

- Majority function
- Quantum-dot Cellular Automata

#### Preliminaries

- Problem formulation
- Node merging approach
  - Noncontrolling pair
  - MA computation
- Experimental results
- Conclusions

 The dominators of a gate g are a set of gates G such that all paths from g to any PO have to pass through all gates in G



 The mandatory assignments (MAs) of a fault test are the unique value assignments to nodes necessary for the test to exist



For stuck-at 1 fault at e: Mandatory assignments (MAs) = { a=1, b=1, c=0, e=0, f=0, g=0 }

• Node Merging on And-Inverter-Graph [2]



v1 and v3 only differ when d=1 and b=c. However, b=c Implies v2=0

Because v2=0, the value of v3 cannot be observed at v5

Replacing v3 with v1 does not change the overall functionality

[2] Yung-Chih Chen and Chun-Yao Wang, "Fast detection of node mergers using logic implications," in *Proc. ICCAD*, 2009.

- A sufficient condition to identify ns for nt:
  - Condition: Let f denote an error of replacing nt with ns. If ns=1 and ns=0 are MAs for stuck-at 0 and stuck-at 1 fault tests on nt, respectively, f is undetectable

#### Introduction

- Majority function
- Quantum-dot Cellular Automata
- Preliminaries
- Problem formulation
- Node merging approach
  - Noncontrolling pair
  - MA computation
- Experimental results
- Conclusions

### **Problem formulation**

- Given: a Majority-Inverter Graph
- Objective: a simplified Majority-Inverter Graph
- Cost function: the number of Majority gates



#### Introduction

- Majority function
- Quantum-dot Cellular Automata
- Preliminaries
- Problem formulation
- Node merging approach
  - Noncontrolling pair
  - MA computation
- Experimental results
- Conclusions

# Noncontrolling pair

- Unlike two-input AND/OR gates, a three-input majority gate has two side-inputs in the fault propagation path, named as a side-input pair
- Does not have noncontrolling value for fault propagation
- The input value can be propagated to the output if and only if the side-input pair are assigned to different values, and these different values are named as a noncontrolling pair



For propagating the value of the input A to the output D, side-input pair (B, C) have to be assigned (0, 1) or (1, 0)

# **MA computation**

- In the MIG, we use the side-input pair and noncontrolling pair to propagate the fault-effect to any POs
- Since the noncontrolling pairs have two value assignments to the side-input pair, the resultant MA set are the intersection of the sets of value assignments which are consistent
- Dominator-based MA computation
- The fanouts of a target node can be either single or multiple, the processes of finding MAs are different

Target node: v3 Dominators: v4, v5 Side-input pairs: (a, e), (c, v1)



Stuck-at o fault on v3 (a, e) = (o, 1) assignments1 = { v3=1, v4=1, a=0, e=1, v2=1 }



Stuck-at o fault on v3 (a, e) = (0, 1) assignments1 = { v3=1, v4=1, a=0, e=1, v2=1 }



Stuck-at o fault on v3
(a, e) = (0, 1) assignments1 = { v3=1, v4=1, a=0, e=1, v2=1 }
(a, e) = (1, 0) assignments2 = { v3=1, v4=1, a=1, e=0, v2=1, b=1, v1=1 }
MAs = { v3=1, v4=1, v2=1 }



Stuck-at o fault on v<sub>3</sub> Previous MAs = { v<sub>3</sub>=1, v<sub>4</sub>=1, v<sub>2</sub>=1 } (c, v<sub>1</sub>) = (o, 1) assignments1 = { v<sub>3</sub>=1, v<sub>4</sub>=1, v<sub>5</sub>=1, v<sub>2</sub>=1, c=0, v<sub>1</sub>=1, b=1, d=1 }



Stuck-at o fault on v<sub>3</sub> Previous MAs = { v<sub>3</sub>=1, v<sub>4</sub>=1, v<sub>2</sub>=1 } (c, v<sub>1</sub>) = (o, 1) assignments1 = { v<sub>3</sub>=1, v<sub>4</sub>=1, v<sub>5</sub>=1, v<sub>2</sub>=1, c=0, v<sub>1</sub>=1, b=1, d=1 } (c, v<sub>1</sub>) = (1, 0) assignments2 = { v<sub>3</sub>=1, v<sub>4</sub>=1, v<sub>5</sub>=1, v<sub>2</sub>=1, c=1, v<sub>1</sub>=0, b=0, d=0, v<sub>3</sub>=0 } (inconsistent) Resultant MAs = { v<sub>3</sub>=1, v<sub>4</sub>=1, v<sub>5</sub>=1, v<sub>2</sub>=1, c=0, v<sub>1</sub>=1, b=1, d=1 }



MAs(v3=sao) = { v3=1, v4=1, v5=1, v2=1, c=0, v1=1, b=1, d=1 }

MAs(v3=sa1) = { v3=0, v4=0, v5=0, v2=0, C=1, v1=0, b=0, d=0 }

Substitute nodes: v2, c, v1, b, d



#### MA computation (Multiple-fanout)

- Perform the stuck-at fault test on each fanout wire of nt
- The MA computation of each fanout wire is similar to singlefanout method
- MAs(*nt=sav*) is the intersection of all consistent MAs(*wi=sav*)



#### Introduction

- Majority function
- Quantum-dot Cellular Automata
- Preliminaries
- Problem formulation
- Node merging approach
  - Noncontrolling pair
  - MA computation
- Experimental results
- Conclusions

#### Experimental Environment & Benchmarks

- The approach was implemented in C++ language
- The experiments were conducted on an Intel Xeon<sup>®</sup> X5570 2.93GHz CentOS 5.11 platform with 48 GBytes memory
- Benchmarks were from <u>http://lsi.epfl.ch/MIG</u>
- Two experiments were performed in this paper:
  - Perform on well–optimised benchmarks
  - Perform on the original benchmarks with the MIG online synthesis system *MIGhty*

# **Experimental Results**

|                |           |       |       | Depth Increase |       |       |        | Depth Preservation |       |       |       |      |         |
|----------------|-----------|-------|-------|----------------|-------|-------|--------|--------------------|-------|-------|-------|------|---------|
| Benchmark      | I/O       | Size  | Depth | Size           | (%)   | Depth | (%)    | Time               | Size  | (%)   | Depth | (%)  | Time    |
| usb_phy        | 113/111   | 484   | 8     | 469            | 3.10  | 8     | 0.00   | 0.51               | 470   | 2.89  | 8     | 0.00 | 0.51    |
| ss_pcm         | 106/98    | 496   | 7     | 493            | 0.60  | 7     | 0.00   | 0.82               | 494   | 0.40  | 7     | 0.00 | 0.81    |
| sasc           | 133/132   | 754   | 7     | 749            | 0.66  | 9     | -28.57 | 1.15               | 751   | 0.40  | 7     | 0.00 | 1.14    |
| simple_spi     | 148/147   | 985   | 9     | 962            | 2.34  | 11    | -22.22 | 2.56               | 976   | 0.91  | 9     | 0.00 | 2.54    |
| pci_spoci_ctrl | 85/76     | 1009  | 12    | 863            | 14.47 | 15    | -25.00 | 7.50               | 872   | 13.58 | 12    | 0.00 | 7.67    |
| i2c            | 147/142   | 1114  | 9     | 1086           | 2.51  | 12    | -33.33 | 2.68               | 1093  | 1.89  | 9     | 0.00 | 2.70    |
| hamming        | 200/7     | 2709  | 62    | 1933           | 7.02  | 65    | -4.83  | 11.88              | 1952  | 6.11  | 62    | 0.00 | 12.10   |
| sqrt32         | 32/16     | 2173  | 165   | 2072           | 4.65  | 187   | -13.33 | 42.46              | 2088  | 3.91  | 165   | 0.00 | 41.71   |
| systemcdes     | 314/258   | 2712  | 20    | 2577           | 4.98  | 25    | -25.00 | 34.40              | 2630  | 3.02  | 20    | 0.00 | 34.42   |
| spi            | 274/276   | 3614  | 20    | 3361           | 7.00  | 20    | 0.00   | 75.81              | 3363  | 6.95  | 30    | 0.00 | 76.53   |
| des_area       | 368/72    | 4259  | 23    | 4006           | 5.94  | 24    | -4.34  | 136.53             | 4008  | 5.89  | 23    | 0.00 | 134.89  |
| max            | 512/130   | 4341  | 30    | 4300           | 0.94  | 30    | 0.00   | 204.56             | 4300  | 0.94  | 30    | 0.00 | 204.80  |
| div16          | 32/32     | 4407  | 103   | 3966           | 10.00 | 129   | -25.24 | 141.08             | 4060  | 7.87  | 103   | 0.00 | 145.52  |
| revx           | 20/25     | 7542  | 144   | 6989           | 7.33  | 174   | -20.83 | 238.48             | 7180  | 4.80  | 144   | 0.00 | 252.21  |
| tv80           | 373/404   | 7802  | 31    | 7553           | 3.19  | 38    | -22.58 | 305.69             | 7592  | 2.69  | 31    | 0.00 | 306.78  |
| mem_ctrl       | 1198/1225 | 8369  | 20    | 8256           | 1.35  | 30    | -50.00 | 132.98             | 8278  | 1.09  | 20    | 0.00 | 134.49  |
| MUL32          | 64/64     | 9161  | 37    | 8497           | 7.25  | 44    | -18.97 | 117.07             | 8703  | 5.00  | 37    | 0.00 | 120.60  |
| MAC32          | 96/65     | 9392  | 42    | 9144           | 2.64  | 58    | -38.09 | 79.10              | 9182  | 2.24  | 42    | 0.00 | 78.95   |
| systemcaes     | 930/819   | 10367 | 26    | 10229          | 1.33  | 29    | -11.53 | 284.82             | 10272 | 0.93  | 26    | 0.00 | 282.89  |
| ac97_ctrl      | 2255/2250 | 12996 | 9     | 12834          | 1.25  | 9     | 0.00   | 97.68              | 12979 | 0.13  | 9     | 0.00 | 100.35  |
| usb_funct      | 1860/1846 | 14842 | 20    | 14636          | 1.39  | 25    | -25.00 | 258.98             | 14704 | 0.93  | 20    | 0.00 | 259.17  |
| square         | 64/127    | 18015 | 41    | 17562          | 2.51  | 81    | -97.56 | 259.66             | 17937 | 0.43  | 41    | 0.00 | 263.63  |
| diffeq1        | 354/289   | 18015 | 220   | 17162          | 4.73  | 244   | -10.90 | 436.08             | 17358 | 3.65  | 220   | 0.00 | 446.67  |
| comp           | 279/193   | 18687 | 78    | 18285          | 2.15  | 106   | -26.31 | 1841.55            | 18388 | 1.60  | 78    | 0.00 | 1883.61 |
| aes_core       | 789/668   | 21616 | 19    | 20402          | 5.62  | 24    | -26.31 | 831.81             | 20555 | 4.91  | 19    | 0.00 | 841.73  |
| pci_bridge32   | 3519/3528 | 22132 | 17    | 21955          | 0.80  | 21    | -23.52 | 501.10             | 22022 | 0.50  | 17    | 0.00 | 503.10  |
| mult64         | 128/128   | 25901 | 110   | 25403          | 1.92  | 113   | -2.72  | 637.64             | 25410 | 1.90  | 110   | 0.00 | 636.07  |
| log2           | 32/32     | 31359 | 202   | 30659          | 2.23  | 216   | -6.93  | 5001.42            | 30715 | 2.05  | 202   | 0.00 | 5000.27 |
| DSP            | 4223/3953 | 44166 | 35    | 43444          | 1.63  | 45    | -28.57 | 1723.69            | 43614 | 1.25  | 35    | 0.00 | 1730.58 |
| Average        |           |       |       |                | 3.85  |       | -20.73 | 462.40             |       | 3.06  |       | 0.00 | 465.74  |

# **Experimental Results**

|                |           |        |       |        | Optimization |       |        |  |
|----------------|-----------|--------|-------|--------|--------------|-------|--------|--|
| Benchmark      | VO        | Size   | Depth | Size   | (%)          | Depth | (%)    |  |
| ss_pcm         | 106/98    | 413    | 7     | 413    | 0.00         | 7     | 0.00   |  |
| usb_phy        | 113/111   | 498    | 10    | 464    | 6.83         | 9     | 10.00  |  |
| sasc           | 133/132   | 782    | 9     | 686    | 12.28        | 8     | 11.11  |  |
| simple_spi     | 148/147   | 1068   | 12    | 877    | 17.88        | 16    | -33.33 |  |
| sqrt32         | 32/16     | 1113   | 495   | 1109   | 0.36         | 493   | 0.40   |  |
| i2c            | 147/142   | 1181   | 14    | 1006   | 14.82        | 11    | 21.43  |  |
| pci_spoci_ctrl | 85/76     | 1402   | 18    | 749    | 46.58        | 13    | 27.78  |  |
| max            | 512/130   | 2865   | 287   | 2865   | 0.00         | 287   | 0.00   |  |
| systemcdes     | 314/258   | 3131   | 27    | 2640   | 15.69        | 24    | 11.11  |  |
| hamming        | 200/7     | 3612   | 75    | 1790   | 50.44        | 69    | 8.00   |  |
| spi            | 274/276   | 3847   | 32    | 3330   | 13.44        | 23    | 28.13  |  |
| des_area       | 368/72    | 4865   | 34    | 4538   | 6.72         | 26    | 23.53  |  |
| div16          | 32/32     | 7175   | 136   | 2467   | 65.62        | 134   | 1.47   |  |
| tv 80          | 373/404   | 9691   | 52    | 7098   | 26.76        | 34    | 34.62  |  |
| MUL32          | 64/64     | 11613  | 43    | 8182   | 29.54        | 47    | -9.30  |  |
| MAC32          | 96/65     | 12063  | 70    | 8993   | 25.45        | 64    | 8.57   |  |
| systemcaes     | 930/819   | 12533  | 46    | 9098   | 27.41        | 30    | 34.78  |  |
| ac97_ctrl      | 2255/2250 | 14382  | 12    | 12444  | 13.48        | 9     | 25.00  |  |
| mem_ctrl       | 1198/1225 | 15604  | 36    | 8145   | 47.80        | 25    | 30.56  |  |
| usb_funct      | 1860/1846 | 16048  | 27    | 14681  | 8.52         | 25    | 7.41   |  |
| revx           | 20/25     | 16164  | 192   | 6486   | 59.88        | 171   | 10.94  |  |
| square         | 64/127    | 18485  | 250   | 17897  | 3.18         | 54    | 78.40  |  |
| aes_core       | 789/668   | 21658  | 26    | 19645  | 9.29         | 27    | -3.85  |  |
| pci_bridge32   | 3519/3528 | 23215  | 30    | 20019  | 13.77        | 22    | 26.67  |  |
| mult64         | 128/128   | 27062  | 274   | 26858  | 0.75         | 112   | 59.12  |  |
| log2           | 32/32     | 32060  | 444   | 30639  | 4.43         | 229   | 48.42  |  |
| diffeq1        | 354/289   | 33632  | 303   | 17962  | 46.59        | 247   | 18.48  |  |
| Total          |           | 296162 | 2961  | 231081 |              | 2216  |        |  |
| Improvement    |           |        |       |        | 21.98        |       | 25.16  |  |

# Conclusions

- We propose a node merging algorithm targeting at gate count minimization for majority logic circuits
- Use logic implications to identify substitute nodes directly
- Our approach can effectively optimize the majority logic circuit, and the implementation cost of the corresponding QCA circuit is also reduced

# Thank You Q&A