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 A majority function is an odd-input function that has the
output value of v if and only if more than half of the
inputs are assigned the value of v

 Majority-Inverter-Graph (MIG) is a directed, acyclic
graph that represents a logic network with three-input
majority gates and inverters [1]
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Node:  Majority gate,  Dot: Inverter

[1] L. Amarú, P.-E Gaillardon, and G. De. Micheli, “Majority-Inverter Graph: A Novel Data-Structure and 
Algorithm for Efficient Logic Optimization,” in Proc. DAC, 2014



 Quantum-dot Cellular Automata (QCA) is the lower-
power nanotechnology that is considered as a
replacement candidate for CMOS
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(a) Binary information of a QCA cell. (b) QCA wire



 The underlying QCA logic devices include QCA inverter,
and QCA majority gate.

 QCA inverter:

 QCA majority gate:
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 The dominators of a gate g are a set of gates G such that
all paths from g to any PO have to pass through all gates
in G
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v3 and v6 are dominators of v1



 The mandatory assignments (MAs) of a fault test are the
unique value assignments to nodes necessary for the
test to exist
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For stuck-at 1 fault at e:
Mandatory assignments (MAs) =
{ a=1, b=1, c=0, e=0, f=0, g=0 }
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v1 and v3 only differ when
d=1 and b=c. However, b=c
Implies v2=0

Because v2=0, the value of v3
cannot be observed at v5

Replacing v3 with v1 does not
change the overall functionality
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• Node Merging on And-Inverter-Graph [2]

[2] Yung-Chih Chen and Chun-Yao Wang, “Fast detection of node mergers using logic implications,”
in Proc. ICCAD, 2009.



 A sufficient condition to identify ns for nt:
 Condition: Let f denote an error of replacing nt with ns. If

ns=1 and ns=0 are MAs for stuck-at 0 and stuck-at 1 fault
tests on nt, respectively, f is undetectable
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 Given: a Majority-Inverter Graph
 Objective: a simplified Majority-Inverter  Graph
 Cost function: the number of Majority gates

Replace v3 with v2
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 Unlike two-input AND/OR gates, a three-input majority
gate has two side-inputs in the fault propagation path,
named as a side-input pair

 Does not have noncontrolling value for fault
propagation

 The input value can be propagated to the output if and
only if the side-input pair are assigned to different
values, and these different values are named as a
noncontrolling pair
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For propagating the value of the input A to
the output D, side-input pair (B, C) have to
be assigned (0, 1) or (1, 0)



 In the MIG, we use the side-input pair and
noncontrolling pair to propagate the fault-effect to any
POs

 Since the noncontrolling pairs have two value
assignments to the side-input pair, the resultant MA set
are the intersection of the sets of value assignments
which are consistent

 Dominator-based MA computation
 The fanouts of a target node can be either single or

multiple, the processes of finding MAs are different
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Target node: v3
Dominators: v4, v5
Side-input pairs: (a, e), (c, v1)
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Stuck-at 0 fault on v3
(a, e) = (0, 1)   assignments1 = { v3=1, v4=1, a=0, e=1, v2=1  }
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Case 1: b = 1, then v2 = 1
Case 2: v1 = 1, then v2 = 1
So, v3 = 1 implies v2 = 1

1
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Stuck-at 0 fault on v3
(a, e) = (0, 1)   assignments1 = { v3=1, v4=1, a=0, e=1, v2=1  }
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Stuck-at 0 fault on v3
(a, e) = (0, 1)   assignments1 = { v3=1, v4=1, a=0, e=1, v2=1  }
(a, e) = (1, 0)   assignments2 = { v3=1, v4=1, a=1, e=0, v2=1, b=1, v1=1 }
MAs = { v3=1, v4=1, v2=1 }
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Stuck-at 0 fault on v3
Previous MAs = { v3=1, v4=1, v2=1 }
(c, v1) = (0, 1)   assignments1 = { v3=1, v4=1, v5=1, v2=1, c=0, v1=1, b=1, d=1 }
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Stuck-at 0 fault on v3
Previous MAs = { v3=1, v4=1, v2=1 }
(c, v1) = (0, 1)   assignments1 = { v3=1, v4=1, v5=1, v2=1, c=0, v1=1, b=1, d=1 }
(c, v1) = (1, 0)   assignments2 = { v3=1, v4=1, v5=1, v2=1, c=1, v1=0, b=0, d=0, v3=0 } (inconsistent)

Resultant MAs = { v3=1, v4=1, v5=1, v2=1, c=0, v1=1, b=1, d=1 }
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1
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MAs(v3=sa0) = { v3=1, v4=1, v5=1, v2=1, c=0, v1=1, b=1, d=1 }

MAs(v3=sa1) = { v3=0, v4=0, v5=0, v2=0, c=1, v1=0, b=0, d=0 }

Substitute nodes: v2, c, v1, b, d

Replace v3 with v2
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 Perform the stuck-at fault test on each fanout wire of nt

 The MA computation of each fanout wire is similar to single-
fanout method

 MAs(nt=sav) is the intersection of all consistent MAs(wi=sav) 

nt

fo1

fo2

fo3
Resultant MAs = 
MAs(w1=sav) ∩ MAs(w2=sav) ∩ MAs(w3=sav)
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 The approach was implemented in C++ language

 The experiments were conducted on an Intel
𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋® X5570 2.93GHz CentOS 5.11 platform with 48
GBytes memory

 Benchmarks were from http://lsi.epfl.ch/MIG

 Two experiments were performed in this paper:
• Perform on well–optimised benchmarks
• Perform on the original benchmarks with the MIG online   

synthesis system MIGhty
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http://lsi.epfl.ch/MIG
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 We propose a node merging algorithm targeting at gate
count minimization for majority logic circuits

 Use logic implications to identify substitute nodes
directly

 Our approach can effectively optimize the majority logic
circuit, and the implementation cost of the
corresponding QCA circuit is also reduced



Thank You
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