

Ш

INDIANA UNIVERSITY BLOOMINGTON

A Statistical STT-RAM Retention Model for Fast Memory Subsystem Designs

Zihao Liu¹, Wujie Wen¹, Lei Jiang², Yier Jin³ and Gang Quan¹

¹Florida International University, ,Miami, FL
²Indiana University Bloomington, Indiana
³ University of Central Florida, FL

Presented by Wujie Wen

Memory Technologies Comparison

	SRAM	DRAM	NAND FLASH	STT-RAM	PCRAM	ReRAM
Data Retention	Ν	4 ms	10y	>10 y	>10 y	>10 y
Memory Cell (F ²)	120-140	7-9	4	8	4	<1
Read Time	0.2 ns	2 ns	0.1 ms	5-10 ns	12 ns	5-10 ns
Write/Erase Time	70 ps	1 ns	1/0.1ms	<10 ns	<50 ns	<10 ns
Number of Rewrites	10 ¹⁶	10 ¹⁶	10 ⁵	10 ¹⁵	10 ⁸	10 ¹⁵
Power Consumption Read/Write	Low	Low	High	Low	Low	Low
Power Consumption other than R/W	Leakage Current	Refresh Power	None	None	None	None

Source: ITRS ERD workshop presentation by Prof. Y. Chen

- 1. Toshiba and Hynix prototype a 4 Gb STT-MRAM(Dec 20, 2016)
- 2. Samsung demonstrates a 8Mb embedded pMTJ STT-MRAM device(Dec 12, 2016)
- 3. IBM demonstrated 11nm STT-MRAM junction, says "time for STT-MRAM is now "(Jul 08, 2016)

Outline

- Introduction
 - ---STT-RAM Basic
 - ---Retention Failure
- Modeling and Validation
- Methodology and Simulation
- Results
- conclusions

STT-RAM Basic

o Data '0'

The magnetization directions of two layers are parallel (low resistance)

o Data '1'

The magnetization directions of two layers are **anti-parallel (high resistance)**

Retention Failure

What is retention failure?

The retention failure of STT-RAM is a phenomenon where an idle cell flips without applying any intentional excitation source.

Two major reasons deteriorate retention failure:

Process technology scales;

Intentional relaxing STT-RAM retention to facilitate the fast and energy-efficient design.

Two major reasons cause retention failure

Source: Intel[®] Technology Journal | Volume 17, Issue 1, 2013

The state of the art retention model

Previous works estimate the STT-RAM retention time using the following equation:

$$\ln(t) = \frac{A * t_m * H_k * M_s}{2k_b * T}$$

Three limitations of this method:

- > The full **statistical information** of the retention time is not available;
- > The **device and environmental variations** are not taken into considerations;
- This equation is derived by assuming an excitation source-spin current is applied.

Outline

- Introduction
- Modeling and Validation
 - --- Modeling
 - --- Model Validation
- Methodology and Simulation
- Results
- conclusions

Modeling

 θ and ϕ describe the dynamic behavior of free layer magnetization (M) at any time.

\succ θ = 0 for low resistant state.

 $\succ \theta = \pi$ for high resistant state.

Energy modeling

Three potential energy included in our model: $U(\theta, \varphi) = U_K + U_p + U_l$

The uniaxial anisotropy energy;

 $U_K = K \sin^2 \theta$

- > The easy-plane anisotropy; $U_p = K_P (\sin^2 \theta \cos^2 \varphi - 1)$
- > The thermal field energy.

$$h_{l,i} = h_l \mathbf{X}_i (t) = \sqrt{\frac{\alpha}{\alpha^2 + 1}} \frac{2k_b T}{\gamma \mu_0 \Delta t \Delta v M_s} \mathbf{X}_i (t) (i = x, y, z)$$

The aforementioned equation can be solved by Landau-Lifshitz-Gilbert equation (LLG) to capture the free layer magnetization dynamic motion.

Model Validation

The validation has two parts:

- > The dynamic behavior of θ with/without thermal field energy;
- > The simulated PDF of θ compare to analytical results.

Outline

- Introduction
- Modeling and Validation
- Methodology and Simulation
 - --- Methodology ("Create-Transfer-Recover-Calculate" method)
 - --- Simulation results validations
- Results
- conclusions

Methodology

Retention time measurement is costly:

- Retention failure is rarely happens even in a sufficient long time window;
- Lots of factors can affect the stochastic retention behavior. (Volume, temperature etc.)
- > Parameters variations make this measurement more complex.

Our proposed "Create-Transfer-Recover-Calculate" semi-analytical method:

- Create a "highly scaled STT-RAM cell" library for the fast retention time calibration;
- **Transfer** the statistical information from the library to any "desired STT-RAM cell";
- Recover the retention time distributions of the "desired STT-RAM cell";
- Calculate the retention failure rate within a given time for the normal mode or variation-aware mode.

Design flow

MAGNETIC SIMULATION RESULTS FOR SCALED CELLS

β	$T_{th}(ns)$	$P_f(T_{th})$	$\log \frac{-T_{th}}{\log(1-P_f)}$	$log(\mu)$
3.1	10^{4}	0.168	10.8834	N/A
	$5 * 10^4$	0.603	10.895	N/A
	10^{5}	0.857	10.847	N/A
	$2 * 10^{6}$	1	N/A	10.8733
3.5	10^{4}	0.874	8.472	N/A
	$2 * 10^4$	0.981	8.516	N/A
	$3 * 10^4$	0.996	8.491	N/A
	$4 * 10^4$	1	N/A	8.511

The simulation results (last column) of retention failure rate is always equal to analytical

results (the fourth column).

Consequently, the **retention failure rate** P_f for **a given time** T_{th} can be easily derived as:

 $P_f = P(t_{ret} \le T_{th}) = 1 - e^{-T_{th}/\mu}$

The **exponential distribution** may provide an excellent accuracy in modeling the probability distribution functions of a STT-RAM cell retention time.

$$P(t_{ret}) = \begin{cases} \frac{1}{\mu} e^{-\frac{1}{\mu}t_{ret}} & t_{ret} \ge 0, \\ 0 & t_{ret} < 0. \end{cases}$$

Step2: Transfer Statistical Information

How to determine the **statistical information of retention time** for any "**desired STT-RAM cell**"?

We propose to use a **noise intensity to retention time transfer function (N-R function)** to facilitate the associated information transfer:

$$log(\mu) = a/\beta^2 + b$$

Step 3 and 4: Recover and calculate

The retention time **distribution recovery** for the "desired STT-RAM cell" can be easily conducted based on the **predicted mean** and **the exponential distribution function**.

The **retention failure rate P**f of "desired STT-RAM cell" can be easily captured by combining the **cumulative distribution functions (CDF) of retention time** and the **N-R function**.

Variation aware mode

Variation aware mode results

We assume that both of MTJ area and thickness suffer from 2% variations. The noise intensity is assumed to be 3.2h.

The results with variations are very close to those without variations.

Outline

- Introduction
- Modeling and Validation
- Methodology and Simulation
- Results
 - --- Sensitivity Analysis of Initial Angle
 - --- Compare to traditional method
- conclusions

A dynamic changing of theta's distribution

Different initial angles

Our results clearly show that:

the initial angle does not impact the

retention time distribution

Ser.	SIV
	and the second se

V scaling	P_t	noise intensity	P_m	T_p
$\Delta V/2^2$	0.1031	2hl	4×10^{-7}	64ms
$\Delta V/1.5^2$	5.5×10^{-5}	1.5hl	1.2×10^{-14}	1s
$\Delta V/3^2$	0.07	3hl	2.79×10^{-4}	26.5 us

- The traditional method always produces a pessimistic result.
- Previous works overestimate the retention error rate and adopt an unnecessarily high refresh frequency.

Outline

- Introduction
- Modeling and Validation
- Methodology and Simulation
- Results
- conclusions

Conclusions

STT-RAM greatly suffers from a **unique data retention error** introduced purely by the **intrinsic thermal noise field**. It's very **difficult but crucial** to accurate calibration of such a type of error.

- We propose a retention time acceleration analysis method, namely "Create-Transfer-Recover-Calculate" to capture the distribution and full statistical information of retention time at interested time.
- Our method can efficiently produce more precise results than previous solutions, providing a clear guidance for architectural designers.
- ✓ Our result shows that the initial angle has little impact on STT-RAM retention time.
- ✓ At last we reveal that the retention time estimated by **previous works is too pessimistic**.

Thanks! Q&A?

