DLPS: Dynamic Laser Power Scaling for Optical Network-on-Chip

Fan Lan[†], Rui Wu[§], Chong Zhang[§], Yun Pan[†], and K.-T. Tim Cheng^{§*}

[†] Zhejiang University

[§] University of California, Santa Barbara

* Hong Kong University of Science and Technology

Outline

- Background of optical interconnect
 - Components in an optical link
 - Power consumption of a laser
 - Power consumption of an optical link
- Laser power control strategy
 - Four operation modes of a laser in an optical link
 - Dynamic power scaling strategy
- Experiments
 - Case study an exemplar optical NoC architecture
 - Case study benchmark FFT-1024
 - Public benchmark suite
- Conclusion

Photonic integration for optical interconnects

- Fully integrated WDM transceiver network for inter- and intra- optical link
- Compact footprint with 300+ active units (48 DFB, 93 EAM, 67 PD) and 120+ passive units (7 AWG, 1X15 MZI switch) on single chip;
- Total 2.56 Tbps (8 × 8 × 40 Gbps) capacity of the photonic NoC chip.
- This technique is scalable and potential for low energy consumption communications (~pJ/bit), dominated by the laser power at the photonic circuit side (regardless the CMOS driver design)

Components in an Optical Link

- On-chip lasers (> 10 mW [1])
- SerDes (~2.2 mW [2])
- Photodetectors
- TIA (~1.3 mW [3])
- Modulator and filter
 - Microrings-based
 - Need tuning
- Tuning (~10 uW [4])

Lasers consume most power in an optical link

[1] C. Zhang, et al., Optical Express, 2014
[2] A. Carpenter, et al., Int. Symp. Comput. Archit., 2011
[3] C. Li, et al., ISSCC, 2013
[4] Y. Zheng, et al., DATE, 2014

Power Consumption of a Laser

• Electric power consumption $P_{in} = I^2 R_S + IV_d$

Laser diode injected current – I

- Optical power output
 - Efficiency η_d
 - Threshold current I_{th}
- η_d and I_{th} decrease as I increases
 - Due to increased temperature
 - Leading to the roll off curve

$$P_{out} = \frac{h\nu}{q} \eta_d' \left(I - I_{th}' \right)$$

Power Consumption of an Optical Link

- Optical power vs. data rate for an optical receiver*
 - At a fixed BER=10⁻¹²
 - $P_{out} \ge optical power$
- Total power consumption of an optical link:

$$P_{link} = P_{in} + P_{TIA} + 2P_{tuning} + P_{SerDes}$$

$$P_{link} = P_{in} + P_{TIA} + 2P_{tuning} + P_{SerDes}$$

$$P_{ink} = P_{in} + P_{ink} + P$$

* H. Pan, et al., Optical Express, 2012

Four Operation Modes of a Laser in an Optical Link

Full-on mode

- Fast, power-consuming
- Off mode
 - Cannot transfer data
 - Zero power
- Standby mode
 - Cannot transfer data
 - Small power
 - Can be turned-on quickly
- Intermediate data rate mode
 - Data rate adjustable
 - Power varies as data rate changes

Switching Time between Laser Power Levels

40 mA DC Bias

+ 1Vpp AC Square Wave

25 mA DC Bias

+ 1Vpp AC Square Wave

Switching time between different ON states is < 1 ns

Test device parameters: PD conversion gain 300V/W; Total loss (fiber + coupling) ~10 dB

Typical Link Power Budget

Full-on power	21.68 mW at 20 Gbps
Intermediate power	18.90 mW at 10 Gbps
Standby power	11.61 mW
Delay from off to full-on	10 ns
Delay from standby to full-on	1 ns

During transient period, power is estimated at the level of the target mode that the laser is switched to, e.g.

- Off \rightarrow full-on, 21.68 mW is consumed during 10 ns
- Standby \rightarrow 10Gbps, 18.90 mW is consumed during 1 ns

Dynamic Laser Power Scaling Strategy

- Data to be transmitted: switch to full-on or intermediate mode, to provide just enough data rate
- No data: first switch to standby mode
- Wait for IDLE cycles, if still no data, switch to off
- Parameters:
 - IDLE = 5
 - 3 transmissions

Case Study – An Exemplar Optical Network-on-Chip Architecture

- A Single-Writer-Multiple-Reader (SMWR) architecture
 - N waveguides for N nodes
 - In each waveguide
 - One writer, N-1 readers
 - Point-to-point communication
- Example 4 nodes SMWR

Case Study – Benchmark FFT-1024

- Use the traffic trace in a benchmark suite
- Assume no turn-on delays → limit
 - Min time (performance)
 - Min power (energy)
- IDLE=0, on-off control
- IDLE=+∞, on-standby
- Optimal IDLE=10

Determining the Optimal IDLE

The optimal IDLE (min energy) should guarantee:
 Energy in standby mode ≤ Turn-on energy from off mode

$$IDLE_{opt} \cdot P_{standby} + D_{standby} \cdot P_{on} \le D_{off} \cdot P_{on}$$

- IDLE_{opt} ≥ the max interval between the transmission sessions
- FFT-1024 case study
 - $0 \leq IDLE_{opt} \leq 16$
 - IDLE_{opt} ≥ 10
 - Thus: IDLE_{opt} = 10

13

Experiments on Public Benchmark Suite

■ If IDLE_{opt} = 0

- DLPS rolls back to on-off
- Energy efficiency is the same as on-off
- If IDLE_{opt} > 0
 - DLPS can reduce energy consumption, compared to on-off
- DLPS can best adapt to applications with different traffic patterns

Conclusion

- Propose a fine-grained control strategy: dynamic laser power scaling (DLPS)
 - Providing just-enough data rate for communication
 - Introduce two new modes: standby mode and intermediate data rate mode
 - Switch to standby mode, or even off, when no data transmissions needed
- Compared to coarse-grained on-off control strategy, our DLPS can:
 - Better adapt to applications with different traffic pattern characteristics
 - Achieve lower energy consumption under certain traffic patterns

Thank you!

Q&A