

Adaptive Load Distribution in Mixed-Critical Networks-On-Chip

Adam Kostrzewa, Sebastian Tobuschat, Leonardo Ecco and Rolf Ernst {kostrzewa, tobuschat, ecco, ernst}@ida.ing.tu-bs.de TU Braunschweig, Germany

Motivation

- today's many-core real-time systems are complex
 - complexity increases
 - integrate previously distributed functions
 - implement new functionality
- different time-related requirements
 - safety-critical applications (SC)
 - worst-case dimensioning
 - deadline oriented

- How to meet the simultanously BE & SC requirements in many-cores?
 - already challenging in current multicore implementations

main difference: communication via Network-on-Chip (NoC)

Networks-on-Chip

- allow integration of many components
- nodes are heterogeneous e.g. processors, memory controllers, eth. controllers
- BE and SC transmissions share NoC resources e.g. links and buffers
- safety requires separation in case of shared resources
 - functional independence still allow application communication
 - timing independence still allow efficient scheduling

Overview

Motivation

- Existing solutions Mixed-Critical NoCs
- Adaptive Load Distribution
- Predictability
- Evaluation
- Conclusion

Standard NoCs

- standard NoCs concentrate on best-effort applications
 - main trade-off between total buffer size (buffering strategy)
 - and link utilization (bandwidth allocation)

Advantages

- high average performance for BE senders
- relatively simple implementation low costs

Disadvantages (safety)

complex multistage arbitration

- FIFO in buffers, two-staged iSLIP for output ports
- distributed on the observation Problems:
 h hardly analyzable i.e. high analysis complexity
 BE no or pessimistic guarantees for SC senders

QoS in NoCs - Spatial Separation

- applies mapping to distribute and isolate mixed-critical senders in space
- every SC stream with a dedicated set of resources i.e. links and buffers

Advantages

- full isolation of BE senders
- guarantees for SC senders

Disadvantages

- hardware overprovisioning
 - large chip area
 - high power consumption
- may be impossible
 - commercially available MPSoCs have limitations
 - e.g. number of ports, ETH interfaces etc.

Interference!

QoS in NoCs – Temporal Isolation

- paths for senders are static during runtime
- Inks and buffers as resources shared in time
 - static isolation service independent from other senders
 - e.g. TDM time-division multiple-access (AEthereal [Goossens], PhaseNoC[Psarras], SurfNoC[Wassel])
 - transmissions access NoC in a predefined cyclic order

Overview

- Motivation
- Existing solutions Mixed-Critical NoCs
- Adaptive Load Distribution
- Predictability
- Evaluation
- Conclusion

Our Goal

- different path allocation methods depending on sender's criticality
 - SC traffic static path allocation
 - BE traffic multiple paths from source to destination
- dynamically distribute transmissions over the set of paths
 - adaptive QoS based on the global state of the system at runtime
 - release resources reserved for SC for BE traffic whenever not used
- high performance for BE and improved guarantees for SC
 - increases hardware utilization re-using of links and buffers
 - permits safe sharing of VCs by tasks with different QoS requirements
- Iow hardware overhead
 - no need for router modifications re-using existing components.

• app Is it possible? How to achieve this?

Overlay network

- overlay network to decouple data flow and admission control
- data layer data transport and data routing and arbitration
- control layer global and dynamic arbitration
 - clients (C) admission control locally in nodes
 - protocol based synchronization of SC and BEs
- Broadcast propagate the global NoC-state

Protocol

- BE may use the resources for SCs if SCs are not active
- BE must release the resources whenver SC is activated
 - safety must be protected by clients
 - switch latency must be formally guaranteed
- Safety assured by clients

Properties

- adaptive scheduling between SC and BE traffic
 - resource arbitration based on the global state of the NoC
 - re-using links whenever possible
 - detouring senders instead of blocking
- exclusive access to the NoC for SC senders
 - reduced blocking and decreased size of buffers in routers
 - permits mixed-critical setups

Implementation

Bottom Layer

- work-conserving arbitration in routers e.g. round-robin, iSLIP
- predictable behavior of routers
 - analyzable with one of the existing analysis

Safe communication for control messages

- control NoC for maximum efficiency e.g. D-NoC &C-NoC in MPPA, Tile64
- dedicated VC capable of giving latency guarantees
 - e.g. traffic shaping, priority based scheduling for VCs

Clients and RM

- Hardware e.g. clients as extension of NI, RM independent unit or in "hotspot"
- Software, similarly to Software Defined Networks
- Combination of both depending on infrastructure

Overview

- Motivation
- Existing solutions Mixed-Critical NoCs
- Adaptive Load Distribution
- Predictability
- Evaluation
- Conclusion

Predictability

- mechanism description \rightarrow mathematical model
- calculate the worst-case response-time
- incl. end-to-end latency for transmissions corner cases
- validate against the deadlines
- busy window approach
- transmissions abstracted with event models
 - η⁺ (Δt), η⁻ (Δt) maximum and minimum number of initiated transmissions during time period Δt
 - framework: Compositional Performance Analysis (CPA)
- only overview details in the paper

Predictability

• the worst-case time necessary to conduct q SC transmissions on the particular path h (w⁺, (q, h))

$$\mathbf{w}^{+}_{i}(\mathbf{q},\mathbf{h}) = \mathbf{q} * \mathbf{C}^{+}_{i}(\mathbf{h}) + \mathbf{B}_{i}\left(\mathbf{w}^{+}_{i}(\mathbf{q},\mathbf{h})\right)$$

duration of q trans.

the maximum blocking resulting from other synchronized transm.

Analysis of blocking for different scheduling setups: "Dynamic Control for Mixed-Critical Networks-On-Chip" Kostrzewa et al. RTSS 2015 Or "Dynamic Admission Control for Real-Time Networks-On-Chips" Kostrzewa et. al. ASP-DAC 2016

Including complex synchronization protocols!

Slack Constrains

BE Overhead – latency which q SC transmissions may experience from BE traffic on a path h

•
$$O_i(q,h) = q * \left(\max_{\forall j \in BE(h)} C^+_{j,ctrl} + \max_{\forall j \in BE(h)} C^+_{j,pckt} \right)$$

maximum latency of blocking message
maximum latency of the last BE packet

- SCHEDULABILITY CONDITION
 - $\forall i \in SC_i(q) \geq O_i(q, h)$

$$SC_i(q) = D_i(q) - R_i(q)$$

- the worst-case slack
- each SC sender must have enough slack to cover the detouring overhead
- otherwise BE can not share paths with SC

Overview

- Motivation
- Existing solutions Mixed-Critical NoCs
- Adaptive Load Distribution
- Predictability
- Evaluation
- Conclusion

Experiments

analytical experiments

- Compositional Performance Analysis (CPA) framework
- pyCPA python library
- simulations
 - OMNeT++ event-based simulation framework
 - HNOCS library

Use-case: Real-Time Video Denoising

Experiments

spatial isolation (SIS)

- all BE senders must use Port0
- no link shared between BE and SC
- temporal isolation (TIS)
 - priority assignments for VCs
 - distribute the load between ports
 - BE blocked when SC are active
- adaptive load distribution (ALD)
 - each BE has a detoured path to Port0
 - when SC sender is active load is detoured

Benchmark-Based Results

Transmission Latencies

Histogram of transmission latencies for adpcm benchmark.

Overview

- Motivation
- Existing solutions Mixed-Critical NoCs
- Adaptive Load Distribution
- Predictability
- Evaluation
- Conclusion

Conclusions

- new method for safe sharing of resources in NoCs
 - arbitration in space and time
- global and dynamic scheduling
 - safe and efficient guarantees for SC senders
 - proved through the formal worst-case analysis
 - significantly improved BE performance
- Iow-hardware overhead
 - no modifications of routers
 - possibility of software implementation
 - applicable in majority of existing NoCs

Thank you for your attention! Questions?

Backup Slides

Control Messages

- proportional to the number of synchronized senders
- constant w.r.t transmission length
 - longer transmissions e.g. DMA transfers

Control Layer Overhead

Hardware (area) overhead resulting from synchronization in NoC.

Improvement From Adaptive Load Distribution

Improvement for different BE benchmarks (normalized to SIC).