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Motivation
 today’s  many-core real-time systems are complex
 complexity increases
 integrate previously distributed functions
 implement new functionality

 different time-related requirements

 safety-critical applications (SC)

 worst-case dimensioning

 deadline oriented

 best-effort applications (BE)

 profit from higher performance/higher 
resource share

ACC

ESP

entertainment

source: Volkswagen
How to meet the simultanously BE & SC
requirements in many-cores?
• already challenging in current multicore implementations

main difference: communication via Network-on-Chip (NoC)
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shared memories

 allow integration of many components
 nodes are heterogeneous e.g. processors, memory controllers, eth. controllers
 BE and SC transmissions share NoC resources e.g. links and buffers
 safety requires separation in case of shared resources
 functional independence - still allow application communication
 timing independence – still allow efficient scheduling

Networks-on-Chip

N9 N10 N11N8

N5 N6 N7N4

N2 N3 N4N1

AppB

AppA
AppC

Video Decoder
AppA AppC

DRAM

ETH
AppB

Interference!
Main Challenge   QoS guarantees + high performance

peripherals
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Overview

 Motivation
 Existing solutions – Mixed-Critical NoCs
 Adaptive Load Distribution
 Predictability
 Evaluation
 Conclusion
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Standard NoCs

 standard NoCs concentrate on best-effort applications
 main trade-off between total buffer size (buffering strategy) 
 and link utilization (bandwidth allocation)

Advantages
 high average performance for BE senders
 relatively simple implementation - low costs

Disadvantages (safety)
 complex multistage arbitration 
 FIFO in buffers, two-staged iSLIP for output ports
 distributed and local arbitration
 head-of-line blocking, back pressure – priority inversions

 BEs & SCs can freely interfere

Problems:
hardly analyzable i.e. high analysis complexity
no or pessimistic guarantees for SC senders
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QoS in NoCs - Spatial Separation 

 applies mapping to distribute and isolate mixed-critical senders in space

 every SC stream with a dedicated set of resources i.e. links and buffers

Advantages

 full isolation of BE senders

 guarantees for SC senders

Disadvantages
 hardware overprovisioning
 large chip area
 high power consumption
 may be impossible
 commercially available MPSoCs have limitations
 e.g. number of ports, ETH interfaces etc.

N9 N10 N11N8

N5 N6 N7N4

N2 N3 N4N1
AppA AppC

DRAM

ETHAppB

Interference!
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QoS in NoCs – Temporal Isolation

 paths for senders are static during runtime
 links and buffers as resources shared in time
 static isolation - service independent from other senders
 e.g. TDM time-division multiple-access 

(AEthereal [Goossens], PhaseNoC[Psarras], SurfNoC[Wassel] )
 transmissions access NoC in a predefined cyclic order
 Advantage : simple implementation and analysis for SCs
 Disadvantage : high temporal overhead for BEs
 dynamic isolation - service depends on other senders
 e.g. prioritization of VCs

(MANGO [Bjerregaard], QNoC [Bolotin], Globally-Synchronized Frames [Lee])
 Advantage : work-conserving scheduling, improved performance for BEs
 Disadvantage : complex analysis for SCs and high hardware overhead

Problems:
Resign from multidimensional nature of the NoC
Lack of a load balancing during runtime !

BE senders blocked for the full duration of SC 
transmissions!

 Decreased utilization or no safety!
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 different path allocation methods depending on sender’s criticality
 SC traffic – static path allocation
 BE traffic – multiple paths from source to destination  
 dynamically distribute transmissions over the set of paths 
 adaptive QoS - based on the global state of the system at runtime
 release resources reserved for SC for BE traffic whenever not used
 high performance for BE and improved guarantees for SC
 increases hardware utilization – re-using of links and buffers
 permits safe sharing of VCs by tasks with different QoS requirements
 low hardware overhead
 no need for router modifications, re-using existing components
 applicable to commercially available NoCs e.g. Tilera, Arteris

Our Goal

Is it possible? 
How to achieve this?
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 overlay network to decouple data flow and admission control
 data layer – data transport and data routing and arbitration 
 control layer – global and dynamic arbitration
 clients (C) - admission control locally in nodes
 protocol based synchronization of SC and BEs

 Broadcast propagate the global NoC-state
 currently active SC senders
 used by them resources
 adjust (block/unblock) paths

available for BE senders

Overlay network

N9 N10 N11N8

N5 N6 N7N4

N2 N3 N4N1
AppA AppC

DRAM

ETH
AppB

C C

CC
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Protocol

 BE may  use the resources for SCs – if SCs are not active
 BE must release the resources whenver SC is activated

 safety must be protected by clients
 switch latency must be formally guaranteed

 Safety assured by clients

N9 N10 N11N8

N5 N6 N7N4

N2 N3 N4N1
AppA AppC

DRAM

ETH
AppB

C C

CC ETH
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 adaptive scheduling between SC and BE traffic
 resource  arbitration based on the global state of the NoC
 re-using links whenever possible
 detouring senders instead of blocking
 exclusive access to the NoC for SC senders
 reduced blocking and decreased size of buffers in routers
 permits mixed-critical setups

Properties
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Bottom Layer
 work-conserving arbitration in routers e.g. round-robin, iSLIP
 predictable behavior of routers
 analyzable with one of the existing analysis

Safe communication for control messages

 control NoC for maximum efficiency e.g. D-NoC &C-NoC in MPPA, Tile64
 dedicated VC capable of giving latency guarantees
 e.g. traffic shaping, priority based scheduling for VCs

Clients and RM

 Hardware e.g. clients as extension of NI, RM independent unit or in “hotspot”
 Software, similarly to Software Defined Networks
 Combination of both depending on infrastructure

Implementation
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 mechanism description  mathematical model
 calculate the worst-case response-time
 incl. end-to-end latency for transmissions – corner cases
 validate against the deadlines

 busy window approach 
 transmissions abstracted with event models 

 𝛈𝛈+ (Δ𝒕𝒕), 𝛈𝛈− (Δ𝒕𝒕) maximum and minimum number of initiated transmissions
during time period 𝚫𝚫𝚫𝚫

 framework: Compositional Performance Analysis (CPA)
 only overview - details in the paper

Predictability
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 the worst-case time necessary to conduct q  SC transmissions on 
the particular path h (𝐰𝐰+

𝒊𝒊 𝐪𝐪,𝒉𝒉 )

Predictability

𝐰𝐰+
𝒊𝒊 𝐪𝐪,𝐡𝐡 = 𝐪𝐪 ∗ 𝐂𝐂+ 𝒊𝒊(𝒉𝒉) + 𝐁𝐁𝒊𝒊 𝐰𝐰+

𝒊𝒊 𝐪𝐪,𝐡𝐡

duration of q trans.

the maximum blocking resulting 
from other synchronized transm.

Analysis of blocking for different scheduling setups:
“Dynamic Control for Mixed-Critical
Networks-On-Chip” Kostrzewa et al. RTSS 2015
Or “Dynamic Admission Control for Real-Time Networks-
On-Chips” Kostrzewa et. al. ASP-DAC 2016

Including complex synchronization protocols!
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BE Overhead – latency which q SC transmissions may experience
from BE traffic on a path h

 𝑂𝑂𝑖𝑖 𝑞𝑞, ℎ = q ∗ max
∀𝐣𝐣𝛜𝛜𝑩𝑩𝑩𝑩(𝒉𝒉)

𝐂𝐂+ 𝒋𝒋,𝒄𝒄𝒕𝒕𝒄𝒄𝒄𝒄 + max
∀𝐣𝐣𝛜𝛜𝑩𝑩𝑩𝑩(𝒉𝒉)

𝐂𝐂+ 𝒋𝒋,𝒑𝒑𝒄𝒄𝒑𝒑𝒕𝒕

 SCHEDULABILITY    CONDITION

 ∀𝒊𝒊 𝝐𝝐 𝑺𝑺𝑺𝑺𝒊𝒊 𝒒𝒒 ≥ 𝑶𝑶𝒊𝒊 𝒒𝒒,𝒉𝒉

 the worst-case slack 
 each SC sender must have enough slack to cover the detouring overhead
 otherwise BE can not share paths with SC

Slack Constrains

maximum latency of blocking message

maximum latency of the last  BE packet

𝑺𝑺𝑺𝑺𝒊𝒊 𝒒𝒒 = 𝑫𝑫𝒊𝒊 𝒒𝒒 − 𝐑𝐑𝒊𝒊 𝒒𝒒
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Experiments
 analytical experiments 
 Compositional Performance Analysis (CPA) framework
 pyCPA python library
 simulations
 OMNeT++ event-based simulation framework
 HNOCS library

 input data 
 memory access traces
 multimedia modules

with block transfers

block transfer

 different block transfer sizes
 CHSTONE : 64B/slot (1 packet)
 MULTIMEDIA: 8KB/slot (125 packets)
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Use-case: Real-Time Video Denoising
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 spatial isolation (SIS)
 all BE senders must use Port0
 no link shared between 

BE and SC

 temporal isolation (TIS)
 priority assignments for VCs
 distribute the load between ports
 BE blocked when SC are active

 adaptive load distribution (ALD)
 each BE has a detoured path

to Port0
 when SC sender is active load 

is detoured

Experiments
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Benchmark-Based Results

Response times of the transmissions from ETH controller
synchronized with the video de-noise application.

Performance of CHSTONE benchmarks (BEs) in the usecase.

On average :
• ~ 50% improvement in comparison with SIS
• ~ 35% improvement in comparison with TIS 
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Transmission Latencies

Histogram of transmission latencies for adpcm benchmark.
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Conclusions

 new method for safe sharing of resources in NoCs
 arbitration in space and time
 global and dynamic scheduling
 safe and efficient guarantees for SC senders
 proved through the formal worst-case analysis
 significantly improved BE performance
 low-hardware overhead
 no modifications of routers
 possibility of software implementation
 applicable in majority of existing NoCs

Thank you for your attention!
Questions?
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Backup Slides
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Control Messages

 proportional to the number of synchronized senders

 constant w.r.t transmission length
 longer transmissions e.g. DMA transfers
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Control Layer Overhead

Hardware (area) overhead resulting from synchronization in NoC.
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Improvement From Adaptive Load Distribution

Improvement for different BE benchmarks (normalized to SIC).
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