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1. Motivation

• The power of convex optimization has been shown extensively in various 

applications such as signal process, communications, smart grid, machine 

learning, circuit design, and other applications. 

• However, in the era of data deluge, software-based optimization solvers 

suffer from limited scalability in high-dimensional data regimes. 

• Therefore, a new technique or a new solver is imperative to conquer these 

limitations.

• The recently invented memristor crossbar can potentially resolve those 

limitations efficiently.
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2. Background

– Memristor & Memristor Crossbar

– Convex Optimization

– Second-Order Cone Programming (SOCP) 

– Homogeneous Quadratically Constrained Quadratic Programming 

(QCQP)



2.1. Memristor

• Introduced as the forth circuit element by L. Chua in 1970s.



2.1. Memristor

• Found by HP in 2008.

• Could “memorize” its most recent history.

• Resistance can be altered by applying different voltage



2.2 Memristor Crossbar

• Computing in analog domain

• Matrix-vector multiplication and 

solving system of linear equations in 

O(1) time complexity
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2.3 Convex Optimization

• Convex optimization is a research field aiming to find the optimal solution 

for the problem of minimizing a convex objective function and subjecting 

to convex constraints.

• Its standard form consists of three parts: 

– an objective function which must be a convex function

– a set of inequality constraints which must be convex as well

– a set of equality constraints which must remain affine



2.3 Convex Optimization

• Therefore, a convex minimization problem is written as:

minimize       𝑓0(𝒙)

subject to:     𝑓𝑖 𝒙 ≤ 0 (𝑖 = 1,… ,𝑚), 

ℎ𝑖 𝒙 = 0 (𝑖 = 1,… , 𝑝)

where the optimization variables 𝒙 ∈ ℝ𝑛, and 𝑓0,𝑓1 , …, 𝑓𝑚 are 

convex functions: ℝ𝑛 → ℝ .

• A convex function can be written as:

𝑓𝑖 𝜃𝑥 + (1 − 𝜃)𝑦 ≤ 𝜃𝑓𝑖 𝑥 + (1 − 𝜃)𝑓𝑖(𝑦)

where0 ≤ 𝜃 ≤ 1.



2.4 Second-Order Cone Programming (SOCP)

• SOCP is a kind of essential convex programs to minimize a linear function 

over a set of linear constraints and the product of second-order cones. 

• It has wide applications in resource allocation in wireless communication 

networks, high-performance computing, smart grid, etc.



2.4 Second-Order Cone Programming (SOCP)

• An SOCP can be formulated as: :

minimize       𝒄𝑇𝒙

subject to: 𝑨𝒙 = 𝒃, 

𝒙1:(𝑛−1) 2
≤ 𝑥𝑛,

where 𝒙 is the optimization variable, 𝒙1: 𝑛−1 is the vector that 

consists of the first (n-1) entries of 𝒙, 𝑥𝑛 is the n-th entry of 𝒙. 

The last constraint represents a second-order cone in ℝ𝑛.



2.5 Homogeneous Quadratically Constrained Quadratic 

Programming (QCQP)

• If the objective function and the inequality constraints are convex 

quadratic, then it is called a quadratically constrained quadratic problem 

(QCQP). 

• A QCQP is homogeneous if all quadratic functions have no linear term. 

• Homogenous QCQPs were commonly used to address the problems of 

resource management in signal processing, such as optimal power 

allocation for linear coherent estimation and optimal spectrum sharing in 

MIMO cognitive radio networks.



2.5 Homogeneous Quadratically Constrained Quadratic 

Programming (QCQP)

• A homogeneous QCQP problem has the form as below:

minimize  𝒙𝑇𝑷0𝒙

subject to:    𝒙𝑇𝑷𝑖𝒙 ≤ 𝒓𝑖 (𝑖 = 1,… ,𝑚),

𝑨𝒙 = 𝒃,

it can be converted to an SOCP problem.



3. Memristor Crossbar-Based Framework For Solving 

Convex Optimization Problems

– Alternating Direction Method of Multipliers (ADMM)

– Solving SOCP Using Memristor Crossbar via ADMM

– Memristor Conductance Matrix Mapping and Negative Elements 

Eliminating

– Procedure of Memristor Crossbar-Based Framework for Solving SOCP 

Problems

– Computational Complexity Analysis

– Memristor-Based Framework for Solving Homogeneous QCQP 

Problems



3.1 Alternating Direction Method of Multipliers 

(ADMM)

• The major advantage of ADMM is that it can split the original problem 

into a set of problems of solving linear systems.

• ADMM solves convex problems of the form:

minimize 𝑓 𝒙 + 𝑔 𝒚 subject to: 𝒙 = 𝒚

where f and g may be non-smooth or take infinite values to encode implicit 

constraints.



3.1 Alternating Direction Method of Multipliers 

(ADMM)

• ADMM is an iterative method. Its k-th iteration is:

𝒙 𝑘+1 = arg min
𝒙

(𝑓 𝒙 + 𝑔 𝒚 + (𝜌/2)||𝒙 − 𝒚 𝑘 +  1 𝜌 𝝁(𝑘)||2
2)

𝒚(𝑘+1) = arg min
𝒚

(𝑓 𝒙 + 𝑔 𝒚 + (𝜌/2)||𝒙 𝑘+1 − 𝐲 +  1 𝜌 𝝁(𝑘)||2
2))

𝝁(𝑘+1)= 𝝁(𝑘) + 𝜌(𝒙(𝑘+1) − 𝒚(𝑘+1))

where 𝜌 > 0 is the step size parameter, and 𝝁 is the dual variable associated 

with the constraint 𝑥 = 𝑦.



3.2 Solving SOCP Using Memristor Crossbar via 

ADMM

𝐈𝑛×𝑛 𝑨𝑻
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𝒗(𝑘) = 𝒘(𝑘) 𝑇
, 𝑠

𝑇
(4) 

𝒗(𝑘) ≡ 𝒙(𝑘+1) + 1/𝜌 𝝁(𝑘) (5)

𝝁(𝑘+1)= 𝝁(𝑘) + 𝜌(𝒙(𝑘+1) − 𝒚(𝑘+1)) (6)

By iteratively solving equations (1)-(6), the SOCP problems can be 

solved.



3.3 Memristor Conductance Matrix Mapping and 

Negative Elements Eliminating

• For using a memristor crossbar to represent 𝑪 =
𝐈𝑛×𝑛 𝑨𝑻

𝑨 𝟎𝑚×𝑚

Equation 𝐂 = 𝑫 ∙ 𝑮𝑇 = 𝑑𝑖𝑎𝑔 𝑑1, … , 𝑑𝑁 ∙

𝑔1,1 … 𝑔1,𝑁

⋮ ⋱ ⋮
𝑔𝑁,1 … 𝑔𝑁,𝑁

𝑇

may be used to 

convert C to the memristor conductance matrix G.

• However, it is over-complicated to use above equation to perform the 

mapping. Hence, we adopt a fast approximation: 𝑔𝑖,𝑗 = 𝑐𝑖,𝑗 ∙ 𝑔𝑚𝑎𝑥, where 

𝑔𝑚𝑎𝑥 is the maximum conductance among memristors in the memristor 

crossbar.

𝑮 = 𝑔𝑚𝑎𝑥 ∙
𝐈𝑛×𝑛 𝑨𝑻

𝑨 𝟎𝑚×𝑚



3.3 Memristor Conductance Matrix Mapping and 

Negative Elements Eliminating

• Since the memristance value cannot be a negative number, effective 

techniques are necessary to eliminate these negative elements in matrix A.

• Consider a linear system 𝑨𝒙 = 𝒃, and suppose that 𝑎𝑖,𝑗 is a negative 

element in A. The equation in the i-th row:

𝑎𝑖,1𝑥1 + ⋯+ 𝑎𝑖,𝑗𝑥𝑗 + ⋯+ 𝑎𝑖,𝑛𝑥𝑛 = 𝑏𝑖

is equivalent to:

 
𝑎𝑖,1𝑥1 + ⋯+ 0 ∙ 𝑥𝑗 + ⋯+ 𝑎𝑖,𝑛𝑥𝑛 + −𝑎𝑖,𝑗 𝑧𝑗 = 𝑏𝑖

𝑥𝑗 + 𝑧𝑗 = 0



3.3 Memristor Conductance Matrix Mapping and 

Negative Elements Eliminating

• Hence, a negative element can be eliminated by setting it to zero and 

introducing one more row and one more column. Thus, the linear system 

𝑨𝒙 = 𝒃 can be written as:
𝑎1,1 … 𝑎1,𝑗 … 𝑎1,𝑛 0

⋮ … … … ⋮ 0
𝑎𝑖,1 … 0 … 𝑎𝑖,𝑛 −𝑎𝑖,𝑗

⋮ … … … ⋮ 0
𝑎𝑛,1 … 𝑎𝑛,𝑗 … 𝑎𝑛,𝑛 0

0 0 1 0 0 1

𝑥1

⋮
𝑥𝑗
⋮
𝑥𝑛

𝑧𝑗

=

𝑏1

⋮
𝑏𝑗
⋮
𝑏𝑛

0



3.3 Memristor Conductance Matrix Mapping and 

Negative Elements Eliminating

• After applying the above technique to C, the linear system can be 

reformulated as 𝑴 ∙ 𝒔 = 𝒓:

𝑰𝑛×𝑛 𝑨𝑛×𝑚
𝑻′ 𝟎 𝑜𝑟 𝑨𝑛×2𝑘

𝑻′′

𝑨𝑚×𝑛
′ 𝟎𝑚×𝑚 𝟎 𝑜𝑟 𝑨𝑚×2𝑘

′′

𝑨2𝑘×𝑛
𝑰 𝑨2𝑘×𝑚

𝑻𝑰 𝟎 𝑜𝑟 𝑰2𝑘×2𝑘

𝒙
𝝀
𝒛

=
𝒖(𝑘)

𝒃
𝟎

• The memristor conductance matrix of 𝑪′is set by: 𝑮′ = 𝑔𝑚𝑎𝑥 ∙ 𝑴



3.4 Procedure of Memristor Crossbar-Based Framework 

for Solving SOCP Problems



3.5 Computational Complexity Analysis

• The algorithm-hardware co-optimization of memristor-based framework 

proposed in this paper is an iterative solution framework. 

• In each iteration, the complexity of solving 𝑴 ∙ 𝒔 = 𝒓 with the memristor 

crossbar is O(1) and that of calculating 𝒚(𝑘+1) with peripheral circuits is 

O(N). 

• Hence the framework presents an overall solution complexity of pseudo-

O(N), or O(MN) if M represents the number of iterations, which is a 

significant improvement compared with the state-of-the-art software-based 

solution of O(N3.5) - O(N4).

• The complexity of initialization of the matrix in the memristor crossbar is 

O(N2), or lower for sparse matrices which are very common in (large-scale) 

optimization problems.



3.6 Memristor-Based Framework for Solving 

Homogeneous QCQP Problems

• According to the eigenvalue decomposition of 𝑷𝑖, we have 𝑸𝑖 such that 

𝑷𝑖 = 𝑸𝑖
𝑇𝑸𝑖. Upon defining: 𝒛𝑖 = 𝑸𝑖𝒙

𝒓𝑖
∈ ℝ𝑛+1,

The homogeneous QCQP problem can be expressed as a convex program with 

second-order cone constraints:

minimize     𝒙𝑇𝑷0𝒙

subject to:   𝒛𝑖 1:𝑛 2 ≤ 𝒛𝑖 𝑛+1 (𝑖 = 1,… ,𝑚)

𝒛𝑖 − 𝑪𝑖𝒙 = 𝒅𝑖 (𝑖 = 1,… ,𝑚)

𝑨𝒙 = 𝒃, 

where the optimization variables are 𝒙 and 𝒛𝑖, and 𝐶𝑖 = 𝑄𝑖
𝑇 , 0

𝑇
, 𝑑𝑖 =

0𝑇 , 𝒓𝑖
𝑇.



4. Experiments & Analysis

– Experiment Methods

– Experiment Results of Solving SOCP problems

– Experiment Results of Solving Homogeneous QCQP problems



4.1 Experiment Methods

• All input matrices are randomly generated using sprandn provided by 

Matlab to generate sparse matrices, since the constraint matrix of an 

SOCP or homogeneous QCQP problem is sparse in general. 

• These inputs are firstly sent to the CVX tool, which is a well-known 

and widely recognized software solver for convex optimizations. 

• After the randomly generated problems are verified to be feasible and 

bounded, our solver is then utilized to solve the problems.

• Element writing inaccuracies, random process variations, and other 

variations are considered and added to the randomly generated 

matrices.



4.2 Experiment Results of Solving SOCP problems

• The condenser the input matrix 𝑨
is, the more reliabilities our 

hardware-based solution 

framework can guarantee. 

• Basically, our algorithm can 

achieve high accuracy (95%) and 

success rates (85%) when the 

process variations are restricted 

below 5%.



4.3 Experiment Results of Solving Homogeneous 

QCQP problems

• Even though we significantly 

reduce the number of iterations by 

relaxing the tolerance level, up to 

96% accuracy can be obtained.

• The impact of process variations 

is quite limited here and no one 

failure is found during the 

experiment process. 



5. Conclusion

• A framework for solving SOCP and homogeneous QCQP problems is 

proposed in this work. 

• The overall time complexity of solving SOCP and homogeneous QCQP 

problems are both pseudo-O(N).

• A maximum of 1.57 × 105X estimated improvement in speed is achieved 

compared with the CVX tool executed on an Intel I7 server. 

• Higher than 94% accuracy can be achieved when solving SOCP problems.

• Higher than 96% accuracy when solving homogeneous QCQP problems.



Thank You !


