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RRAM-based Computation

• Emerging Devices, such as RRAM devices, provide a promising solution 

to realize better implementation of brain inspired circuits and systems in a 

high energy efficiency way
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Related Work about RRAM-based NNs

• Architecture and circuit designs

– RRAM-based Deep Neural Networks 

[Hu_DAC_2012,Chi_ISCA_2016,Liu_IEEE TCAS I_2016, etc]

– RRAM-based Spiking NNs [Tang_DATE_2015,Hu_IEEE 

TCAD_2016]

– RRAM-based Convolutional NNs [Wang_ISCAS_2016, 

Shafiee_ISCA_2016]

– Training NN on RRAM [Hasan_IJCNN_2014]

• EDA tools

– Simulator [Xia_DATE_2016]

– Design optimization tool [Gu_ASPDAC_2015]

• Demonstration

– NN/Hopfield Network [Prezioso_Nature_2015,Lee_IEDM_2016]

– Convolver [Gao_IEEE Electron Device Letters_2016]
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• Fault Classification of RRAM Device:

– Hard Fault (Stuck-At Faults)

• The resistance is unchangeable

– Soft Fault

• The resistance is changeable 

but not correct

– Static Fault

• Already happened before using

– Dynamic Fault

• Happened during using

• Soft faults can be tolerant by

inner fault tolerance of NN 

[Gu_ASPDAC_2015]

• Previous designs ignore the influence of hard faults

RRAM Device Meets Kinds of Faults
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Impact of Hard Faults

• The yield (the percentage of available cells) of RRAM 

device varies from 60% to more than 90% in different 

materials and technologies [Chen_IEEE TC_2015] 

• We test the classification accuracy of a 784x100x10 NN on 

MNIST test bench with random stuck-at-0 and stuck-at-1 

faults:

• Hard faults can obviously influence the performance of 

RRAM-based computation

Yield Ideal 95% 90% 80%

Accuracy 97.8% 26.7~60.4% 15.5~38.6% 10.6~28.0%

Reduction - >37% >59% >69%
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Fault-tolerant Research

• Memory-oriented methods use redundant cells and arrays 

to substitute faulty cells [Wang_DAC_12,Koh_ICCD_09]

• These methods are not available for RRAM-based 

computation

– Redundant cell is helpless: the basic unit is the whole column 

instead of single cell 

– Unable to directly shut down faulty cells: if the size of RRAM 

crossbar array is M * N, M * N control lines are needed to control 

every cell independently, which is unacceptable

• We need computation-oriented research to tolerant the hard 

faults in RRAM-based computation system
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Fault-tolerant Method for RRAM-based

Neural Computing System

• Background

– NNs on RRAM

– RRAM Faults

• Proposed Methods

– Fault-tolerant mapping and redundant scheme

• Future Work
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Proposed Methods

• Mapping algorithm with inner fault-tolerant ability

• Redundant schemes and circuits  
• Redundant crossbars

• Independent Redundant Columns
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Mapping Algorithm

• Traditionally, two RRAM crossbars are needed to represent the positive and 

negative values of matrix:

• Original mapping algorithm accords to the sign of weights to determine the 

RRAM values:

• This mapping method doesn’t consider RRAM faults

– Example

– Target Value: -5

– Range of value 

represent by RRAM devices: [1, 10]
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Mapping Algorithm

• However, in some situations, the influence of hard faults can be 

directly tolerant in mapping phase

• Proposed Mapping Method

• Target: minimize the difference between 

the ideal value of matrix and the 

practical value represented by RRAM

• Step 1: Initializing

• Step 2: Greedily mapping the weights 

cell-by-cell

• Cannot solve all situations



Proposed Method

• Mapping algorithm with inner fault-tolerant ability

• Redundant schemes and circuits 
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Hardware Structure

• Two Redundant schemes and corresponding redundant circuits 

are proposed  
• Redundant crossbars

• Independent Redundant Columns

Proposed Redundant Circuit



Redundant Crossbars

• Structure: Using multi-crossbars as redundant crossbars
– Original structure (Original crossbar):

– Modified structure (Original crossbar + Redundant crossbars):
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Redundant Crossbars

Mapping algorithm: Co-mapping different crossbars to get the 

best available results
• Target application matrix: C

• Original computing process:

• Computing process with redundant crossbars:
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Redundant Crossbars

Cell-by-cell Mapping Process
Target Value: -5

Range of value represent by  

RRAM devices: [1, 10]

Redundancy Ratio (Number of Redundant Crossbars): 1

• Initialization:

• Step 1 (Adjust the first cell): skip

• Step 2 (Adjust the second cell):

• Step 3 (Adjust the third cell):

• Step 4 (Adjust the fourth cell):



Redundant Crossbars

• Computing Process: merge the results from the original RRAM 

crossbar and the results from redundant crossbars together
• Definition: R is the redundant ratio, standing of extra RRAM crossbar arrays 

that used as redundant structure
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Independent Redundant Columns

• Given the fault ratio of a single device is P, the size of RRAM 

crossbar array is M x N, the expectation of faults in each 

column is P x M
– Solution: A smaller redundant unit which only contains P x M cells

– Divide each column into P x M parts (called ‘cut’), while the 

expectation of faults in each cut is 1

– R indicates the number of redundant devices in a redundant column 

for one cut
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Independent Redundant Columns

Structure: Using small independent columns as Redundant 

Columns
• Original structure (Original crossbar):

• Modified structure:
Original crossbar Redundant columns
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Independent Redundant Columns

Mapping algorithm: Co-mapping corresponding columns to get 

best available result 
• Target application matrix: C

• Original Mapping process:

• Modified Mapping process:
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Hardware Overhead

• The proposed redundant methods requires additional RRAM 

cells and corresponding function/control modules

• The detailed comparison between original method and 

proposed two methods is as follows:

• s

• s



Experimental Results

Three case studies
1. Mapping an 128x128 matrix onto RRAM-based computing systems

2. 128x128 Matrix-vector multiplication on RRAM-based computing 

system

3. 784x100x10 NN for MNIST on RRAM-based computing system; 

Three evaluation metrics
1. Mapping Error: l2 norm distance between ideal matrix and mapped 

matrix

2. Computing Error: l2 norm distance between ideal output vector and 

RRAM computed output vector

3. MNIST Error: error rate of MNIST classification accuracy. The error 

rate of MNIST on CPU platform (ideal case) is 2.17%



Experimental Results

• Performance of Mapping Algorithm
• Great improvement for all three evaluation metrics under different 

faults

• Especially effective for testing cases with low (below 5%) faults

• For 5% SAFs, MAO reduce MNIST error from 52.11% to 4.01%

• No extra overhead is introduced by MAO

• s



Experimental Results

• Performance and overhead under some typical cases



Experimental Results

• Energy-Performance Trade-Off (Task: MNIST)
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