Supporting Compressed-Sparse Activations and Weights on SIMD-like Accelerator for Sparse Convolutional Neural Networks

Chien-Yu Lin and Bo-Cheng Lai

Institute of Electronics Engineering National Chiao Tung University 図えぶ通た学

Convolutional Neural Network

- CNN now dominants visual recognition applications
 - Face recognition, object detection, autonomous vehicles...
- Major components: deep convolutional layers

Convolutional Layer

A lot of parallel multiplications and additions

Computations of a conv layer

CNN Acceleration with SIMD

• MAC unit can efficiently perform CNN and thus, adopted by many CNN accelerators [Google TPU, DianNao, Zhang 2015, Cambricon-X]

N. P. Jouppi et al., In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA 2017

T. Chen et al., DianNao: a small-footprint high-throughput accelerator for ubiquitous machine learning, ASPLOS 2014

C. Zhang et al., Optimizing fpga-based accelerator design for deep convolutional neural networks, FPGA 2015

S. Zhang et al., Cambricon-X: An accelerator for sparse neural networks, MICRO 2016

CNN Acceleration with SIMD

CNN Acceleration with SIMD

CNN is Sparse

- About 60% of weights and activations are ZEROs
 - Zeros in activations are dynamically generated after ReLU
 - Zeros in weights are obtained with Network Pruning
- Sparsity is promising for speedup (Zero-skipping) and energy reduction (smaller memory footprint)

A. Parashar et al., SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks, ISCA 2017 S. Han et al., Learning both weights and connections for efficient neural network, NIPS 2015

Sparse CNN on SIMD?

Sparse CNN on SIMD?

Sparse CNN on SIMD?

Sparse CNN on SIMD!

A Simple Sparse Layer

Weight Output Act a3 $\mathbf{0}$ a5

A Simple Sparse Layer

Compressed-Sparse Data: Only Keep Non-Zeros

Plus Index: Bit-Vector Recording Zero/Non-Zero

Target of DIM: Find Out Effectual Pairs

a5

w6

a7

Dual Indexing Module: Step1 Activation Index Weight Index 0 0 0 0 0 0 0 U AND 1 Act Weight 0 Weight Output 0 Act Index Index (]) 0 0 0 0 0 () **Co-activated Index** Effectual 0 1 **Pairs** a3 1 **w3** $\left(\begin{array}{c} \\ \end{array} \right)$ 0 0 **w5** 01 a5 1 1 **w6** 0 1 1 0 0 0

Dual Indexing Module: Step2

Activation Index

Dual Indexing Module: Step3

Activation Index

Dual Indexing Module: Step4

Activation Index

Alignment Issue Solved!

Activation Index

Accelerator Design

Extended from Cambricon-X [MICRO 2016]

Accelerator Design

• Plug DIM into each PE

Accelerator Design

Encode output activations on-the-fly

Evaluation Methodology

- Logic: Synthesis with TSMC 40nm
- SRAM and DRAM: CACTI
- Benchmark: Open Sparse-AlexNet + ImageNet Data
- Experiments: In-house performance simulator

Accelerator Variants

• Overheads: 14.4% in Area and 19.5% in Power

Acc	Act	Weights	Index	Encoder	Area(mm ²)	Power(mW)
DAW	Dense	Dense	N/A	N/A	2.05	395
SpA	Sparse	Dense	IM	~	2.15	428
SpW	Dense	Sparse	IM	N/A	2.23	441
SpAW	Sparse	Sparse	DIM	~	2.34	472

DRAM Access Volume

• 47.3% less in DRAM access volume compared to DAW

Energy Consumption

46% energy reduction compared to DAW

Energy-Delay-Product

55.4% EDP reduction compared to DAW

Summary

- SIMD-like accelerator has alignment issue while performing sparse CNN
- We propose a novel *Dual Indexing Module* (DIM) to handle the alignment issue efficiently
- By keeping data in a **compressed-sparse format**, a CNN accelerator with DIM can reduce DRAM access volume, energy consumption and EDP for 47.3%, 46% and 55.4%

Thank You!

Additional Materials

Design Parameters of SpAW

Accelerator Parameters	Value
Clock Rate	1 GHz
Number of PEs	16
WBs (Total)	32 KB
WBs-Idx (Total)	2 KB
AB-In/AB-Out (each)	8 KB
AB-In-Idx/AB-Out-Idx (each)	500 B
PE Parameters	Value
Multiplier Precision	16-bit
MAC Width	16 * 16-bit
WB	2KB
WB-Idx	128 B

Related Work - Cnvlutin

• Decouple neuron lanes to do zero-skipping in neurons

Related Work - Cambricon-X

Utilizing weight sparsity with step indexing (a compressed-sparse format)

