A Nonvolatile Flip-Flop-Enabled Cryptographic Wireless Authentication Tag with Per-Query Key Update and Power-Glitch Attack Countermeasures

Chiraag Juvekar1, Hyung-Min Lee2, Joyce Kwong3, and Anantha Chandrakasan1

1Massachusetts Institute of Technology
2Korea University, 3Texas Instruments

30 million worth fake wines were seized in 2012

In 2014, Aston Martin recalled 18,000 cars due to counterfeit brake pedals

Fake malaria drugs caused 100,000 deaths in Africa
Threat Model:

- **Passive attacks** against the tag such as DPA/DEMA
- **Non-invasive active attacks** like power glitch attacks
Key Features

- Regulating Voltage Multiplier
- Pulse-based Telemetry
- Key Update Protocol
- Keccak Cryptographic Core
- NV-DFF Key-storage
- FeCap-based Energy Backup

Wireless power/data for compact-size tag
To prevent side-channel attack
To limit power-glitch attack
Area-Optimal Energy Backup Unit

- **3.5nJ** backup energy requirement
- **C_{BK}** (HV FeCap) has **3.4x higher energy density** including regulator efficiency than **C_L** (LV FeCap)
- Energy Backup Unit needs **2.2x less area** compared to single output cap
Power-Glitch Countermeasures

Power Glitch Causes:
- Reader is pulled away
- Malicious Reader

Guaranteed safe backup and key update

Backup w/ Worst-Case Glitch Event

The tag safely performs:
- NVDDFF restore
- Key update
- NVDDFF backup