Design of Resource Sharing
Reconfigurable ΔΣ SAR-ADC

Motomi Ishizuka, Kohei Yamada, Yosuke Toyama and Hiroki Ishikuro

Keio University
Background

• Need of ADC for wireless sensor network
 – Vast variety of sensing signal

• $\Delta \Sigma$ SAR ADC
 – Fully Passive integrator
 Low power, Small area Incomplete integrate
 → High resolution is challenging
 – Active integrator
 High resolution Large area
 → Small area is challenging
Block Diagram

- Almost capacitor are Time-sharing
 - Three benefits
 - Reduce the capacitor area ($4C_{DAC}$ with differential)
 - Use Charge shuttling Technique
 - Ease the reduction of nonlinearity
Resource Sharing Technique

1. **Δ phase**
 - \(C_{DAC} \) set the difference voltage

2. **Σ phase**
 - The charge is transferred \(C_{STORE} \) to \(C_{DAC} \)

3. **Quantization Phase**

4. **Store phase**
 - the integrated signal returns to \(C_{STORE} \)
Measurement Results

- **SAR only mode**
 - Sampling freq. vs SNDR, Power
 - Peak ENOB: 7.7bit

- **ΔΣ assisted mode**
 - FFT spectrum
 - SNDR = 62.9dB
 - Fin = 12KHz
 - Fs = 4.096MHz
 - BW = 60kHz