Logic Synthesis for Energy-Efficient Photonic Integrated Circuits

Zheng Zhao, Zheng Wang, Zhoufeng Ying, Shounak Dhar, Ray T. Chen, and David Z. Pan

Dept. of Electrical and Computer Engineering
The University of Texas at Austin
Outline

- Introduction and background
- Logic synthesis algorithms
- Experimental results
- Conclusion
What is Optical Computing?

- Use optics/photonicics to perform computation
- Information is an optical signal sourced by lasers and detected by photodetectors

Great potentials
- Significant reduction of signal transfer latency
- Ultra-low energy consumption
- Simplified architecture for many computation tasks
Automate the Chip Design Flow

- Specification
- Functional/Logic Design
- Circuit Design
- Physical Design
- Physical Verification and Signoff

Logic Synthesis → ?

Logos: Cadence, Synopsys, Phoenix Software, Mentor Graphics, Luctex, Photronics
Optical Computing Components

Microresonator-based Optical Switches

- Can be implemented with microrings/microdisks

2X2 optical switch

![Diagram of 2X2 optical switch](image-url)
Optical Computing Components

- Y-branch combiner and directional coupler
 - When there is only one light input

Size of a typical coupler ≈ 2X size of a typical micro-resonator-based switch

Power efficiency factor = \(\frac{P_{out}}{P_{in}} \)

\[
\begin{align*}
P_{out} &= \frac{1}{2} P_{in1} \\
P_{out} &= \frac{1}{2} P_{in2}
\end{align*}
\]

\[
\begin{align*}
P_{out} &= k P_{in1} \\
P_{out} &= (1-k) P_{in2}
\end{align*}
\]
Optical Computing Components

- An NX1 combiner/coupler can be implemented by connecting an array of 2X1 combiners/couplers.
- NX1 coupler of arbitrary power efficiency factors is achievable by cascading (N-1) 2X1 couplers.
Outline

- Introduction and background
- Logic synthesis algorithms
- Experimental results
- Conclusion
Previous Works and Problems

♦ Synthesis using virtual gates [Condrat+, GLSVLSI’2011]
 › A large number of optical components and
 › Cascaded optical splitters

♦ BDD-based direct implementation [Wille+, ASPDAC’2015]
 › A large number of cascaded optical combiners with single light input

Each has 3dB loss cascaded quickly!
Previous Works and Problems

- Data structure and the direct implementation

Binary decision diagram (BDD)

Optical direct implementation: each multi-parent BDD node has a combiner
Problem with Direct Implementation

- Due to BDD’s **single-path property**, any combiners have **at most one** light input.
- Power is cut by half (3dB).

For Binary decision diagram (BDD),

\[\text{abc} = 101 \]

Light stream to the lower/upper input port.
Problem with Direct Implementation

Power efficiency is a big issue

- Optical power depletes fast due to device loss
- Optical power become too small to be detected
- Requires more amplifiers which leads to greater overhead
For an general optical network, power efficiency factor \(\gamma = \frac{P_{out}}{P_{in}} \).

In a BDD-based optical network, \(\gamma \) can be defined for:

- **node**, as an optical switch
- **edge**, as an input branch of a combiner/coupler
- **path** and the **whole network**
Proposed Algorithms

- **Our goal**: to improve the worst-case network efficiency under a reasonable overhead and computational budget

- Two techniques
 - **Combiner elimination** to avoid cascaded combiner loss
 - **Coupler assignment** to redistribute the power resource
Technique 1: Combiner Elimination

- Idea: avoid cascaded combiner loss
 - e.g., for abc=101

Greater combiner loss at the terminal but not cascaded
Quantify the Benefit

- After eliminating a combiner at an internal node

\[\frac{\gamma_{\text{new}}}{\gamma_{\text{org}}} = \frac{nIn}{1 + nCopy \cdot n\text{CornTerm}/nTerm} \]

- Example: eliminating c’s combiner

\[\gamma_{\text{new}}/\gamma_{\text{org}} = \frac{2}{1 + 1 \cdot \frac{1}{2}} = \frac{4}{3} \]
Technique 1: Combiner Elimination

♦ How to select the node
 › **Benefit ratio**: $\gamma_{new}/\gamma_{org} > 1$
 › **Overhead**: the duplicated node number is controlled

♦ Heuristic: for paths with the lowest power first
 › Compute the **ratio** and **overhead** for nodes closer to the terminal first (generally have smaller overhead)
 › If both meet the set criteria, copy the node cone
 › Stop until the overhead budget is reached
Idea: redistribute the power with directional couplers (DCs) instead of combiners

Assign the coupling efficiency for each DC
General Coupler Assignment Formulation

- Polynomial programming formulation
 - On path p_i, x_j is an assignment of coupling efficiency for the edge e_j

- Objective function

$$
\text{Maximize } \min_i \left\{ \gamma_i \cdot \prod_{j:e_j \in p_i} x_j \right\}
$$

- Power efficiency for path p_i
- Other source of power loss on path p_i

- Transform the max-min objective to path constraints with dummy variable f

$$
f \leq \gamma_i \cdot \prod x_j, \forall i$$
General Coupler Assignment Formulation

- Other constraints
 - **Node constraint:** rule of power conservation
 \[
 \text{s.t. } \sum_{i \in I_n(n)} x_i = 1, \quad \forall n
 \]
 - Power efficiency for each coupler
 \[
 0 \leq x_i \leq 1, \quad \forall i
 \]
- Solvable by semidefinite programming (SDP) relaxation, but very time consumptive
Fast Solution

♦ **Iteratively** solve by quadratically constrained programming (QCP)
 ‣ In each iteration, optimize a small set of x_i’s

♦ For each critical path,
 ‣ Evaluate the divergence factor for each multi-input node v

\[
div(v) = \max_{(u_i, v), (u_j, v) \in E} \frac{\gamma_{top\rightarrow u_i}}{\gamma_{top\rightarrow u_j}} \quad u_i \neq u_j
\]

 ‣ For each selected node, reassign the two input edges contribute to the div
 ‣ Select two nodes with the highest div for QCP
Outline

- Introduction and background
- Logic synthesis algorithms
- **Experimental results**
- Conclusion
Experimental Setup

- Two techniques performed iteratively for each benchmark and stop if no further improvement.
- Implementation in C++ with **CUDD** package.
- Linux machine with 8 3.4GHz CPUs.
- QCP solver: **Gurobi QCP**.

Benchmarks

- Microelectronics Center of North Carolina (MCNC).
- International Workshop on Logic and Synthesis (IWLS) benchmarks.

BDD-reordering heuristic

- CUDD_REORDER_SYMM_SIFT
Optical Power Efficiency

Prev. work: [Wille+, ASPDAC’2015]
Average power efficiency ratio over prev.: 27.02X
Average/greatest CPU time: 1.88s / 14.5s
Loss Distribution

Distribution moves from low efficiency zone to high

Power efficiency zone \{0\sim 10^{-6}, 10^{-6}\sim 10^{-5}, \ldots, 10^{-1}\sim 1\}
Outline

- Introduction and background
- Logic synthesis algorithms
- Experimental results
- Conclusion
Conclusion

- We study the **optical power depletion**, a critical issue of integrated optical circuits.
- We address the problem with two techniques, **combiner elimination** and **coupler assignment**.
- Which also helps to build a much more **noise-resilient** and **scalable** integrated photonic system.
Thanks!

Q & A ?