FPGA Laboratory System supporting Power Measurement for Low-Power Digital Design

Marco Winzker, Andrea Schwandt
Bonn-Rhein-Sieg University
24th Asia and South Pacific Design Automation Conference
ASP-DAC 2019, Tokyo
FPGA Laboratory System

- The FPGA laboratory systems with Intel Cyclone IV respectively Cyclone V FPGAs are unique in offering:
 - HDMI input and output
 - Power measurement
 - Comparison of two different CMOS technologies
 - Available as a remote lab

- Various design experiments possible, e.g.
 - CMOS technology
 - Temperature
 - Lane Detection
Design Experiment “Lane Detection”

- Original algorithm for lane detection:
 - 24-bit memory
 - 12 x RGB-to-Y

- First optimization of lane detection algorithm:
 - Shifting luminance conversion before line-memory
 - 1 x RGB-to-Y
 - 12-bit memory
Original Algorithm vs. Optimized Algorithm

• Original algorithm for lane detection
 • 41.30 mA core current
 • 49.56 mW core power

• Optimized algorithm for lane detection
 • 30.11 mA core current
 • 36.13 mW core power

\(\Rightarrow \) 27% power saving
\(\Rightarrow \) Identical output image

Power measurement enables understanding of circuit design