Partitioned and Overhead-Aware Scheduling of Mixed-Criticality Real-Time Systems

Yuanbin Zhou1, Soheil Samii1,2, Petru Eles1, Zebo Peng1

1ESLAB, Linköping University, Sweden
2General Motors R&D, USA
Overview

1. Introduction & System Model
2. Motivation
3. Problem Formulation
4. Proposed Approach
5. Experimental Results
Mixed-Criticality Systems (MCS)

- Tasks with different criticalities share computation resources
- Criticality used in functional safety, e.g., automotive
- Industrial safety standards
 - ISO 26262 – road vehicles
 - DO 178C – avionics software
 - IEC 61508 – generic standard
- Core concept for MCS is sufficient independence
Partitioned Scheduling (Hierarchical Scheduling)

- **Global Scheduler** assign system resources to Local Scheduler
- Tasks scheduled by **Local Scheduler**
- Misbehaviors do not affect tasks with different criticality levels
- Online local scheduler (flexible), Offline global scheduler (predictable)
Task Model

- Single-core platform
- Timing parameters for task τ_i
 - Worst-case Execution Time (WCET) C_i
 - Period T_i
 - Relative Deadline D_i ($D_i \leq T_i$)
 - Fixed Priority P_i
- Criticality level SIL_i
Partition Model

- Periodic partition:
 - Period T_s
 - Deadline D_s ($D_s = T_s$)
 - Capacity C_s

![Diagram of partition model]
Design of Partitions

- Need to be determined
 - Allocation tasks to partitions
 - Period: T_s, Capacity: C_s

- (C_s, T_s) pairs of each partition obtained1
 - Cost function of each partition (e.g., Utilization) defined

- Tasks within partitions are guaranteed schedulable

1Almeida L, Pedreiras P. Scheduling within temporal partitions: response-time analysis and server design[C]//Emsoft. 2004: 95-103.
Motivation – Offline Partition Scheduling

- Offline scheduling
 - Schedule table determined before system runs
 - Schedule table size affect: **Synthesis time, Memory usage**

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partition</th>
<th>Start Time</th>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>S_2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>S_3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>S_1</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>
Motivation – Hyper-Period

- **Hyper-Period**
 - Schedule is same cross Hyper-Period (HP)
 - Least Common Multiple of periods

- **Very long Hyper-Period**
 - Example 1: HP\{15, 16, 31, 32, 33\} = 163680

- **Harmonic relations**
 - \(\frac{T_{i+1}}{T_i} \in \mathbb{N}^+\)
 - Example 2: HP\{16, 16, 32, 32, 32\} = 32

\[
\begin{array}{cccc}
T_{s1} & s_1 & s_2 & s_3 & s_1 \\
\end{array}
\]

Hyper-Period
Motivation – Period vs Utilization

- Partitions’ utilization increased by setting different periods\(^2\)
 - e.g., harmonic periods
- Research problem: to **trade-off** hyper-period length and system schedulability

\(^2\)Yoon M K et al. Holistic design parameter optimization of multiple periodic resources in hierarchical scheduling[C]//DATE,2013: 1313-1318.
Motivation – Overhead between Partitions

- Construct **offline** schedule table
 - Preemptive EDF to simulate within hyper-period
 - … Utilization $\leq 1 \rightarrow$ schedulable
 - Several partition slices due to preemption
 - Scheduling overhead between partition slices

\[C_{s_1} \]
\[s_1 \]
\[T_{s_1} \]
Motivation – Overhead between Partitions (Cont.)

- Too many partition slices → too much scheduling overhead → impact schedulability
- EDF is not optimal when overhead considered
- Combine partition slices → reduce utilization → improve schedulability
 - Deadline and release constraints not violated
 - Possible due to offline scheduling
Problem Formulation

- Input:
 - Task Parameters (including WCET, Deadline, Period, Criticality Level)

- Output:
 - Offline schedule table for partitions

- Constraints:
 - System is schedulable
 - Reduce partition schedule length
Overall Approach

1. Start
2. Construct \((C_s, T_s)\) search space for each partition
3. Hyper-Period optimization
4. Schedule table construction for partitions
5. Overhead optimization
6. Schedulable?
 - no
6.1. Go back to Hyper-Period optimization
 - yes
 - Stop
Experimental Results (Hyper-Period Value)

(a) Proposed Approach

- Proposed approach is within several hundreds
- Straight-forward approach (NIS): rounded into nearest integer
 - from several hundreds to 10^{37}

(b) Straight-forward Approach
Experimental Results (System Schedulability)

- HPOA: proposed approach, NIS: straight-forward approach
- Differences in schedulability are smaller than 10%
- Large reduction in hyper-period, small sacrifice on schedulability
Experimental Results (Scalability)

- Synthesis is done within scalable time
Conclusions

- Partitioned and overhead-aware scheduling **framework** for mixed-criticality systems
- Synthesis schedule table for partitions with **reduced schedule length** and **preserved system schedulability**
- **Re-scheduling algorithm** to reduce runtime overhead between partitions