Quantum Circuit Compilers
Using Gate Commutation Rules

Toshinari Itoko, Rudy Raymond, Takashi Imamichi,
Atsushi Matsuo, Andrew W. Cross

IBM Research

Quantum compiler

Quantum Algorithm

/7 N\

\

Quantum Program :

:

|

Quantum Compiler J |
|

|

|

1

< L

\ Quantum Circuit

\ /

N 7’

-— e e e - _—em e == =

Quantum Computer

Computational result

]
<_> SPK

* Dozens of quantum algorithms have been
developed (e.g. see “Quantum Algorithm Zoo”).

» Factoring [Shor 1994], Database search [Grover 1996]

* Recent advance in HW technologies has enabled
anyone with access to real quantum computers.

* IBM (2016), Rigetti Computing (2017), Alibaba (2018)

* To run quantum algorithms on quantum computer,
we need Software Development Kit (SDK)
including quantum (circuit) compiler.

Three major functionalities in quantum compiler

F—X

L

* Decomposition

Decompose a program into Decomposition
elementary operations (gates)

¢

§

Quantum Program . :
- * Optimization

|

i

Quantum Circuit o Mapping
Transform a logical quantum circuit
into an physical one satisfying
processor-dependent constraints

_ . . .
. Optimize a quantum circuit Opt'm'zat"’”@
Quantum Compiler (sequence of gates)
J L

Swap gate mapping

Find a mapping: Logical circuit -> Physical circuit
* Mapping = Initial qubit layout + Additional swap gates
« Layout = Allocation of logical qubits to physical qubits

Subject to coupling constraint

IN: Logical circuit

CX,

1 e

L Couplin

%
CX2

RXx

?

g constraint

L\u

@

op)

Y, ~

Minimize

OUT: Physical circuit

B

_‘
TRx

A

N

(
P— |
Dy

(

Additional swap gates

Initial qubit layout

bs)
by)
bo)
bs)

Our research contribution

1. Formulation of Minimum Swap Gate Mapping (MSGM) with
considering gate commutation rules

* Decrease gate dependencies = increase search space
2. A better heuristic algorithm for solving MSGM

Gate dependencies
Input circuit Conventional Proposed

by Cj el
b2 ‘3 Rz

Quantum circuit

Quantum circuit is a sequence of elementary quantum gates.

We consider a universal gate set {Rx, Rz, CNOT}.

* One-qubit rotation gates: Rx, Rz

Rx[0](b2) Rx
Acting qubit

Rotation angle (omit in this talk)

* Controlled-NOT gate (CNOT)
Control qubit

CNOT(b3, b4)——

Acting qubits —
Target qubit

Ex) Quantum circuit

CX,

b1
e

Gate application order

Coupling constraint

Only two-qubit (CNOT) gates on coupled qubits are allowed,
which is represented by coupling graph.

Coupling Graph

—

Qubit 0

| Qubit 1

Qubit 2 —

Qubit 3 - - N Qubit 4

Node < Qubit
Device image of IBM Q 5 Tenerife [ibmgx4] Edge < Coupling

Constraint satisfaction by adding swap gate

Coupling constraint can be resolved by adding swap gates.

Example (Initial qubit layout: b; -> g; fori=1,2,3,4) by I b, _ I Ef 1
CX1 CXa b by o——D
s>)

q1 (b1 L
N

> o
\V) =
Q
&
A
X
=

(01)
D 2 (b2) »—P (01
by | CLU a3 (by) ——{% T RX L (by)
by i qa (ba) D (ba)

Not executable b, b4
(@) AddswAP(@zas) (o)
Logical qubits are swapped

bl bz \‘ b3 b3 b2
(a)—(a)—(2

CNOT(bs, b,) is now executable as CNOT(q,, q4)
8

Minimum Swap Gate Mapping (MSGM)

» Logical circuit + Gate commutation rules + Coupling constraint
-> Physical circuit (Initial qubit layout + Additional swap gates)

L Minimize
/ Our solution
Logical circuit : L \
g Dependency graph Physical circuit

bl Cifl %4 qd1 (bl) L (bg)
by —D Rz L [q2 (b2) (D * ? D— (b1)
by — o L g3 (bs) Rz j— (bo)
3 N
by —D t | qa (ba) D (ba)

Additional swap gates
Initial qubit layout

I
Gate commutation rules

K Coupling constraint /
9

Gate commutation rules

We take into account 4 commutation rules:

BT -4
— L/ — L/
s> s>

L/ N

(a) R,—control (b) Control-control

e bE

(c) Ry—target

-

L/

4
\J/

(d) Target—target

Two consecutive gates are commutative &
They can be exchanged without changing what they compute.

Ex) Equivalent conversion
considering commutation rules

Mayer 1! Mayer 2 Nayer 3
| oxq || | [X4)
T (: X | | nf N
CX3
by +—H—H —H R, H —
| CXo || ,L | | CXs5 |
bs T 9 | (L |
bs — BT — 7 P
Nayer 1! NMayer 21 Nayer 3 Nayer 4"
| L N j P E— | |
—D—H e+ R\ +—
| Ixe cndl I | | ~exs’|
| ¥ THAY 1 ’L |
C — JC ¥ JC — A

10

Dependency graph

Dependency graph represents the precedence relation of gates in a circuit.

Node < Gate
Edge < Dependency Gate u precedes v <& Path from u to v exists

CX C CX C
bl '1 /%,\4 bl '1 /Kél

CXo

CX3 T CX3
by —b i Rx by —D L Rz j— 1R, -e— —oR,
5 N L

b3 ® N D
U U

by —€
N (a) R,—control
— —
M = _M
\/ L/
P N
NP N

(b) Control-control

11

Blocking Gates

Our algorithms maintain their progress by blocking gates.

Blocking gates are leading unresolved gates in dependency graph
(for a current qubit layout).

Resolved gates = {1, 2}

Blocking gates = {3, 4}
Unresolved gates = {3, 4, 5,6, 7, 8, 9}

12

Heuristic algorithm (Outline)

Maintains layout [and blocking gates K
Assumes an initial layout is given

Selects a qubit pair to be swapped based on its swap score

Initialize K as gates without in-edge in dependency graph

Update K by processing feasible gates

Yes

Is K empty ?
No |

Compute swap score for each edge in coupling graph

VL

Add swap at max-score edge (i.e. update 1)

Terminate

Dependency graph

(Current) blocking gates K

13

Heuristic algorithm (Detalls)

For each edge i.e. coupled physical qubits (i, j),
swap score of (i, j) ;= current cost — cost after swap (i,)

cost := sum of (weighted) shortest path lengths on coupling
graph between acting qubits for all unresolved gates

Coupling graph

Layout [= (b0, b1, b2, b3, b4) — (q0, g1, 92, 93, g4)
Blocking gates K = {CNOT (b0, b4)}
Unresolved gates = {CNOT(bO0, b4), CNOT(b2, b4)}

CNOT(b0,b4) CNOT(b2,b4)
1 1
[\ [

1
current cost = (1.0) x 3 + (0.5) x 2

cost after swap (i, j) =
(q0,g2)=>(1.0)x 2+ (0.5) x 3
(g1,92)=>(1.0)x3+(0.5)x 3
(92,93)=>(1.0)x3 + (0.5) x 1
(q3,94)=>(1.0)x 2+ (0.5) x 1

14

Computational experiment: Setting

We compared the numbers of additional swap gates of our heuristic
with those of two state-of-the-art algorithms.

QRAND: A randomized heuristic algorithm implemented in QISKit 0.5.4
ZPW: Ax-based heuristic search algorithm proposed by Zulehner, Paler, Wille (2018)

We set the initial qubit layout for our heuristic and QRAND to b; -> g; for all i.

Dataset

Circuits originated from RevLib benchmark

We chose 44 circuits with #qubits = 10 and #gates < 50, 000 from the circuits
available at http://iic.jku.at/eda/research/ibom_gx_mapping

Coupling graphs

IBM Q 16 Rueschlikon V1.0.0 (ibmgx3) I H ”

Evaluation of heuristic algorithm

Our algorithm outperformed QRAND and ZPW for all instances.
« #swaps decreased by 45.5% from QRAND, 23.8% from ZPW on average

Numbers of additional swap gates (for circuits with 10 qubits)

mm QRAND Ei_

mini_alu 305 173

gft 10 1 O 200 82 40 33
sys6-v0 111 10 215 116 67 46
rd73 140 10 230 100 58 49
iIsing_model 10 10 480 18 14 12
rd73 252 10 5,321 2,054 1,541 1,212
sgn_258 10 10,223 4,060 2,867 2,254
sym9 148 10 21,504 8,001 5,907 4,456

max46_240 10 27,126 10,833 8,012 5,905

Summary

- Considering gate commutation rules in the formulation of
quantum circuit mapping is significant.

* Dependency graph helps us develop better algorithms:
Our heuristic algorithm performs very well in the experiment.

Future work

* Finding better initial qubit layouts
« Considering other cost functions
* Depth
 Fidelity

