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Quantum compiler
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* Dozens of quantum algorithms have been
developed (e.g. see “Quantum Algorithm Zoo”).

» Factoring [Shor 1994], Database search [Grover 1996]

* Recent advance in HW technologies has enabled
anyone with access to real quantum computers.

* IBM (2016), Rigetti Computing (2017), Alibaba (2018)

* To run quantum algorithms on quantum computer,
we need Software Development Kit (SDK)
including quantum (circuit) compiler.



Three major functionalities in quantum compiler
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Swap gate mapping

Find a mapping: Logical circuit -> Physical circuit
* Mapping = Initial qubit layout + Additional swap gates
« Layout = Allocation of logical qubits to physical qubits

Subject to coupling constraint
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Our research contribution

1. Formulation of Minimum Swap Gate Mapping (MSGM) with
considering gate commutation rules

* Decrease gate dependencies = increase search space
2. A better heuristic algorithm for solving MSGM

Gate dependencies
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Quantum circuit

Quantum circuit is a sequence of elementary quantum gates.

We consider a universal gate set {Rx, Rz, CNOT}.

* One-qubit rotation gates: Rx, Rz

Rx[0](b2) Rx
Acting qubit

Rotation angle (omit in this talk)

* Controlled-NOT gate (CNOT)
Control qubit

CNOT(b3, b4)——

Acting qubits —
Target qubit

Ex) Quantum circuit
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Coupling constraint

Only two-qubit (CNOT) gates on coupled qubits are allowed,
which is represented by coupling graph.

Coupling Graph
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Constraint satisfaction by adding swap gate

Coupling constraint can be resolved by adding swap gates.

Example (Initial qubit layout: b; -> g; fori=1,2,3,4) by I b, _ I Ef 1
CX1 CXa b by o——D
s> )
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D 2 (b2) »—P (01
by | CLU a3 (by) ——{% T RX L (by)
by i qa (ba) D (ba)

Not executable b, b4
(@) AddswAP(@zas) (o)
Logical qubits are swapped

bl bz \‘ b3 b3 b2
(a)—(a)—(2

CNOT(bs, b,) is now executable as CNOT(q,, q4)
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Minimum Swap Gate Mapping (MSGM)

» Logical circuit + Gate commutation rules + Coupling constraint
-> Physical circuit (Initial qubit layout + Additional swap gates)

L Minimize
/ Our solution
Logical circuit : L \
g Dependency graph Physical circuit

bl Cifl %4 qd1 (bl) L (bg)
by —D Rz L [ q2 (b2) (D * ? D— (b1)
by — o L g3 (bs) Rz j— (bo)
3 N
by —D t | qa (ba) D (ba)

Additional swap gates
Initial qubit layout

I
Gate commutation rules

K Coupling constraint /
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Gate commutation rules

We take into account 4 commutation rules:
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(d) Target—target

Two consecutive gates are commutative &
They can be exchanged without changing what they compute.

Ex) Equivalent conversion
considering commutation rules

Mayer 1! Mayer 2 Nayer 3
| oxq || | [ X4 )
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Dependency graph

Dependency graph represents the precedence relation of gates in a circuit.

Node < Gate
Edge < Dependency Gate u precedes v <& Path from u to v exists

CX C CX C
bl '1 /%,\4 bl '1 /Kél

CXo
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(b) Control-control
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Blocking Gates

Our algorithms maintain their progress by blocking gates.

Blocking gates are leading unresolved gates in dependency graph
(for a current qubit layout).

Resolved gates = {1, 2}

Blocking gates = {3, 4}
Unresolved gates = {3, 4, 5,6, 7, 8, 9}
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Heuristic algorithm (Outline)

Maintains layout [ and blocking gates K
Assumes an initial layout is given

Selects a qubit pair to be swapped based on its swap score

Initialize K as gates without in-edge in dependency graph

Update K by processing feasible gates

Yes

Is K empty ?
No |

Compute swap score for each edge in coupling graph

VL

Add swap at max-score edge (i.e. update 1)

Terminate

Dependency graph

(Current) blocking gates K
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Heuristic algorithm (Detalls)

For each edge i.e. coupled physical qubits (i, j),
swap score of (i, j) ;= current cost — cost after swap (i, )

cost := sum of (weighted) shortest path lengths on coupling
graph between acting qubits for all unresolved gates

Coupling graph

Layout [ = (b0, b1, b2, b3, b4) — (q0, g1, 92, 93, g4)
Blocking gates K = {CNOT (b0, b4)}
Unresolved gates = {CNOT(bO0, b4), CNOT(b2, b4)}

CNOT(b0,b4) CNOT(b2,b4)
1 1
[ \ [

1
current cost = (1.0) x 3 + (0.5) x 2

cost after swap (i, j) =
(q0,g2)=>(1.0)x 2+ (0.5) x 3
(g1,92)=>(1.0)x3+(0.5)x 3
(92,93)=>(1.0)x3 + (0.5) x 1
(q3,94)=>(1.0)x 2+ (0.5) x 1
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Computational experiment: Setting

We compared the numbers of additional swap gates of our heuristic
with those of two state-of-the-art algorithms.

QRAND: A randomized heuristic algorithm implemented in QISKit 0.5.4
ZPW: Ax-based heuristic search algorithm proposed by Zulehner, Paler, Wille (2018)

We set the initial qubit layout for our heuristic and QRAND to b; -> g; for all i.

Dataset

Circuits originated from RevLib benchmark

We chose 44 circuits with #qubits = 10 and #gates < 50, 000 from the circuits
available at http://iic.jku.at/eda/research/ibom_gx_mapping

Coupling graphs

IBM Q 16 Rueschlikon V1.0.0 (ibmgx3) I H ”



Evaluation of heuristic algorithm

Our algorithm outperformed QRAND and ZPW for all instances.
« #swaps decreased by 45.5% from QRAND, 23.8% from ZPW on average

Numbers of additional swap gates (for circuits with 10 qubits)

mm QRAND Ei_

mini_alu 305 173

gft 10 1 O 200 82 40 33
sys6-v0 111 10 215 116 67 46
rd73 140 10 230 100 58 49
iIsing_model 10 10 480 18 14 12
rd73 252 10 5,321 2,054 1,541 1,212
sgn_258 10 10,223 4,060 2,867 2,254
sym9 148 10 21,504 8,001 5,907 4,456

max46_240 10 27,126 10,833 8,012 5,905



Summary

- Considering gate commutation rules in the formulation of
quantum circuit mapping is significant.

* Dependency graph helps us develop better algorithms:
Our heuristic algorithm performs very well in the experiment.

Future work

* Finding better initial qubit layouts
« Considering other cost functions
* Depth
 Fidelity



