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• Search

• Ranking

• Recommendation systems

• Collaborative filtering

• Digital assistants

• Advertisements

Machine Learning Is Everywhere
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NVIDIA TITAN V (Volta)

CUDA Cores 5120

Tensor Cores 640

Deep Learning Performance 

(TeraFLOPS)
110

Power Supply (W) 600

Thermal Design Power (W) 250

But at What Cost

Jetson TX2 (Pascal)

CUDA Cores 256

Tensor Cores 0

Deep Learning Performance 

(TeraFLOPS)
1

Power Supply (W) -

Thermal Design Power (W) 7.5

// Tensor Cores perform A * B + C on 4x4 matrices
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• Energy consumption scaling factors

• Multipliers: quadratic function of bit-width

• Adders: linear function of bit-width

• Caches: sublinear function of size

• Reducing the bit-width of operands through quantization 

widens the gap between energy consumption of memory 

accesses and computation

Cost Breakdown – Energy Consumption

M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” ISSCC, 2014.

Memory-to-Compute Energy Ratio for Multiply Operation

8KB Cache 32KB Cache 1MB Cache DRAM

Int8 18.75 37.50 187.50 2437.50

Int32 4.84 9.68 48.39 629.03

Float16 6.82 13.64 68.19 886.36

Float32 4.05 8.11 40.54 527.03

// Each multiplier/adder 

(MAC) generates  3 (4) 

accesses to the memory 
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• Intel Haswell architecture

• 32-bit integer operations

Cost Breakdown - Latency

“Intel 64 and IA-32 architectures optimization reference manual,” https://software.intel.com.

“Intel Haswell,” https://www.7-cpu.com/cpu/Haswell.html.

Integer 

Operation

# of 

Operations

Latency 

(Clock Cycle)

Add 12 1

Multiply 4 1

Memory Size (KB)
Latency 

(Clock Cycle)

L1 Cache 32 4 – 5

L2 Cache 256 12

L3 Cache 8,192 36 – 58

DRAM - 230 – 422

https://software.intel.com/
https://www.7-cpu.com/cpu/Haswell.html
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Memory

Reduce accesses to the memory

Reduce storage requirements for model parameters

Model performance

 Cause little or no degradation in classification accuracy

 Computation

Reduce the number of required resources

Goals
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• McCulloch-Pitts neuron

Standard Neuron Model

𝑓 =
1,  

𝑗

𝑎𝑗 × 𝑤𝑗 ≥ 𝑏

0, otherwise.

𝑎𝑗: binary inputs to the neuron

𝑤𝑗: weights

𝑏: bias or threshold

AND OR NOT

// Rationale: Digital circuits and processors could be built using these neuron-based logic gates. 

Let’s do the inverse, i.e., utilizing digital logic gates to perform inference without having to read 

parameters off memory and performing expensive computations. 



7

Optimizing Individual Neurons

𝑎0

𝑎1

𝑎2

𝑎0

𝑎1

𝑎2

𝑓

// Only quantize 

activations to binary 

values and leave 

weights/biases 

unconstrained 

(otherwise to 

maintain output 

accuracy size of the 

DNN will have to be 

greatly increased )
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• Apply common logic expression extraction to share 

resources among outputs of a layer (steps I thru V)

Optimizing Layers

𝑎0

𝑎1

𝑎2

𝑎0
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𝑎0

𝑎1

𝑎2

𝑎0
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𝑎2
𝑎0

𝑎1

𝑎2
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𝑓0
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𝑓1

𝑓2

𝑓0

𝑓1

𝑓2

Ⅰ Ⅱ

Ⅲ

ⅣⅤ

// Optimized 

logic requires 

7 logic gates 

while 

implementing 

each neuron 

individually 

requires 13 

logic gates in 

total.
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• The size of truth table grows exponentially with the number of 

inputs to a neuron

• Leads to scalability issues

• For each neuron, define an incompletely specified Boolean 

function by considering input combinations, which are encountered 

when we apply the training data to the neural network

• Permutations that lead to an output of 1 constitute the ON-set

• Permutations that lead to an output of 0 constitute the OFF-set

• Permutations that are not encountered constitute the DON’T CARE-set 

(DC-set)

• Advantages

• Small number of entries specified in the truth table

• Increased potential for logic optimization

Optimizing Neurons with a Large Number of Inputs
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• Assume the depicted 

neuron never 

encounters the 

following input 

permutations:

• 𝑎0𝑎1𝑎2 = 000

• 𝑎0𝑎1𝑎2 = 110

• This allows defining 

a DC-set which in 

turn enables further 

optimization of the 

logic function of the 

output signal

Example

𝑎0

𝑎1

𝑎2

𝑎0

𝑎1

𝑎2

𝑓
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1. Sort cubes of ON-set in increasing order of probability of 
being covered by the expansion of other cubes

1. Define a weight matrix where each row corresponds to a 
cube in the ON-set, each column corresponds to a variable in 
the cube, and 0/1 values are replaced with −1/+1.

2. Find the dot product of each row with the column sum of 
weight matrix

3. Sort the outputs of dot product in increasing order of values 
(Pick randomly when there is a tie)

• For the previous example:

ON-set          Weight Matrix        Column Sums       Dot Product

001                 -1  +1 +1               +2  +2  +2                  +2

110                 +1 +1  -1                                                  +2

101                 +1  -1 +1                                                  +2

111                 +1 +1 +1                                                  +6

Generating a Prime & Irredundant Cover
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2. Raise variables in an uncovered cube of sorted ON-set 

while maintaining orthogonality with OFF-set

• Make prime

3. Mark all cubes in the sorted ON-set that are covered by the 

prime cube as covered

• Do single cube containment

4. Repeat steps 2 and 3 until we get a prime and irredundant 

cover of the function

Prime & Irredundant Cover (Cont’d)

// The expand and make_irredundant functions consist of a number of  highly parallelizable 

for loops => Can speed up optimization by writing a multi-threaded CPU program or a 

CUDA program to run the function on GPUs.
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// We can apply logic optimizations across two or  more consecutive layers at the same time. 

We may also use min-cut partitioning to reduce memory accesses for intermediate values. 

Summary of the Realization Method

// Use the Glow compiler to map to hardware accelerators 

designed for processing neural networks

//  The first and last layers are optimized  

separately using full quantization  to 

achieve an overall acceptable performance
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• Logic synthesis allows optimizing individual neurons, layers, and 

collections of layers that constitute the neural network

• Two-level logic minimization algorithms are utilized to find an 

efficient implementation for neurons defined using an 

incompletely specified function

• Multi-level logic minimization algorithms are utilized to optimize 

groups of neurons within a single layer or multiple layers across a 

neural network

• Common logic expression extraction

• SAT-based resource sharing

• Retiming to minimize register count

• Can improve performance by pipelining and/or register retiming

Full Suite of Logic Optimization Techniques
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• Map the optimized netlist directly to hardware (e.g. FPGA)–

similar to Microsoft Brainwave

• Weights are stored on the FPGA’s BRAM 

• Best achievable latency

• High resource consumption (without any resource reuse)

• Compile the high-level graph defined in Python (PyTorch) 

onto a CPU, a GPU,  or a specialized hardware accelerator

• For example, Intel CPUs are capable of performing 1,024 

AND/NAND/OR/XOR operations in a single cycle

• The compiler needs to find 1,024 independent bitwise 

operations defined in the high-level graph and pack them 

together to optimize for Intel CPUs

Mapping to Hardware
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Forward Propagation in MLPs

// All operations are similar to 

those for MLPs (multi-layer 

perceptrons), except the 

activation function, which is 

replaced with the sign

function.
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• MNIST dataset of handwritten digits

• 28x28 grayscale images

• 60,000 training samples

• 10,000 test samples

• Intel Arria 10 GT 1150 FPGA

• 427,000 adaptive logic modules (ALMs)

• 5,562,240 bits of block RAM

• 1,518 DSP blocks

• 32-bit floating-point multiply-accumulate operation

• 541 ALMs (this count constitutes our baseline)

• Latency: 34.68𝑛𝑠 (again latency of a single ALM is our 

baseline)

Experimental Setup
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• MLP architecture

• 784 – 100 – 100 – 100 – 10 (FC1 – FC2 – FC3 – FC4)

• CNN architecture

• Conv1: 3 × 3 × 1, 10 output channels, 2 × 2 max pooling

• Conv2: 3 × 3 × 10, 20 output channels, 2 × 2 max pooling

• FC1: 500 – 10 (fully connected)

Experimental Results – Accuracy

Neural 

Network

Classification Accuracy (%)

Baseline SW-Q1 HW-Q1

MLP 98.27 96.89 97.01 (+0.12)

CNN 99.00 98.21 97.92 (-0.29)

• Baseline uses float-32 representation

• SW-Q1 represents the same neural network as the baseline with activations 

quantized to binary values

• HW-Q1 is the neural network solution obtained by our proposed solution
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• Improvements in optimized layers (layers 2 through 𝐿 − 1)
• 100% saving in storage required for model parameters

• 100% saving in memory accesses for reading model parameters

• The following table reports the overall improvements: 

Experimental Results – Hardware Cost

Neural Network
Computation

MACs       Latency

Memory
(Bytes)

MLP Baseline 20,000 14 80,800

HW-Q1 207 0.88 25

Improvement 97x 16x 3,232x

CNN Baseline 217,800 7 23,640

HW-Q1 3,630 0.41 514

Improvement 60x 17x 46x

// The setup is 

somewhat  in 

favor of baseline 

because it 

assumes that all 

weights and 

activations can 

be read once and 

reused as many 

times as needed 

and that there are 

an unlimited 

number of 

resources.
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 Memory

 Reduce accesses to the memory

 Reduce storage requirements for model parameters

Model performance

 Cause little or no degradation on classification accuracy

 Computation

 Reduce the number of required resources

Goals
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• Replace a few consecutive layers as a single equivalent 

layer

• The truth table inputs are provided by the first green layer 

while the outputs are evaluated at the second green layer

• In contrast to having a separate truth table for each pair of 

consecutive layers

• The intermediate layers may be arbitrarily deep and/or wide

Ongoing Work: Vestigial Networks



22

• Binary quantization may lead to a substantial drop in 

accuracy on relatively harder datasets

• LeNet-5 on CIFAR-10: 75.91%

• LeNet-5 on CIFAR-10 (binary activations): 57.05% (-18.86%)

• Multivalued quantization allows compensating accuracy loss 

due to binary quantization

Multivalued Quantization

Neural 

Network

Classification Accuracy (%)

Baseline SW-Q1 SW-Q2 SW-Q3 SW-Q4

LeNet-5 75.91 57.05% 68.75% 75.01% 76.17%

// Need to apply multivalued logic minimization in Espresso to find an optimized hardware 

realization of the neural network.
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• Use a clipped ReLU as the activation function

• Trainable clipping value

• Quantize activations using 𝑘 bits

Multivalued Quantization (Cont’d)

J. Choi et al., “PACT: Parameterized Clipping Activation for Quantized Neural Networks,” 2018.
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// Lower  => lower quantization error

Higher  => closer resemblance of the stanard ReLU function

Set  high in the beginning to allow gradients to propagate.
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• Memory is the bottleneck in processing deep neural 

networks

• Energy consumption

• Latency

• This work presented a realization method that allows 

inference without reading model parameters from memory

• There are a few solutions for compensating the accuracy 

loss due to binary quantization (work in progress)

• The resulting solution will have the same level of accuracy as 

the baseline while enjoying the benefits of proposed solution

Conclusion


