
Mahdi Nazemi, Ghasem Pasandi, and

Massoud Pedram

http://sportlab.usc.edu/

Asia and South Pacific Design Automation Conference

Jan. 22, 2019

Energy-Efficient, Low-Latency Realization of Neural

Networks Through Boolean Logic Minimization

http://sportlab.usc.edu/

1

• Search

• Ranking

• Recommendation systems

• Collaborative filtering

• Digital assistants

• Advertisements

Machine Learning Is Everywhere

2

NVIDIA TITAN V (Volta)

CUDA Cores 5120

Tensor Cores 640

Deep Learning Performance

(TeraFLOPS)
110

Power Supply (W) 600

Thermal Design Power (W) 250

But at What Cost

Jetson TX2 (Pascal)

CUDA Cores 256

Tensor Cores 0

Deep Learning Performance

(TeraFLOPS)
1

Power Supply (W) -

Thermal Design Power (W) 7.5

// Tensor Cores perform A * B + C on 4x4 matrices

3

• Energy consumption scaling factors

• Multipliers: quadratic function of bit-width

• Adders: linear function of bit-width

• Caches: sublinear function of size

• Reducing the bit-width of operands through quantization

widens the gap between energy consumption of memory

accesses and computation

Cost Breakdown – Energy Consumption

M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” ISSCC, 2014.

Memory-to-Compute Energy Ratio for Multiply Operation

8KB Cache 32KB Cache 1MB Cache DRAM

Int8 18.75 37.50 187.50 2437.50

Int32 4.84 9.68 48.39 629.03

Float16 6.82 13.64 68.19 886.36

Float32 4.05 8.11 40.54 527.03

// Each multiplier/adder

(MAC) generates 3 (4)

accesses to the memory

4

• Intel Haswell architecture

• 32-bit integer operations

Cost Breakdown - Latency

“Intel 64 and IA-32 architectures optimization reference manual,” https://software.intel.com.

“Intel Haswell,” https://www.7-cpu.com/cpu/Haswell.html.

Integer

Operation

of

Operations

Latency

(Clock Cycle)

Add 12 1

Multiply 4 1

Memory Size (KB)
Latency

(Clock Cycle)

L1 Cache 32 4 – 5

L2 Cache 256 12

L3 Cache 8,192 36 – 58

DRAM - 230 – 422

https://software.intel.com/
https://www.7-cpu.com/cpu/Haswell.html

5

Memory

Reduce accesses to the memory

Reduce storage requirements for model parameters

Model performance

 Cause little or no degradation in classification accuracy

 Computation

Reduce the number of required resources

Goals

6

• McCulloch-Pitts neuron

Standard Neuron Model

𝑓 =
1,

𝑗

𝑎𝑗 × 𝑤𝑗 ≥ 𝑏

0, otherwise.

𝑎𝑗: binary inputs to the neuron

𝑤𝑗: weights

𝑏: bias or threshold

AND OR NOT

// Rationale: Digital circuits and processors could be built using these neuron-based logic gates.

Let’s do the inverse, i.e., utilizing digital logic gates to perform inference without having to read

parameters off memory and performing expensive computations.

7

Optimizing Individual Neurons

𝑎0

𝑎1

𝑎2

𝑎0

𝑎1

𝑎2

𝑓

// Only quantize

activations to binary

values and leave

weights/biases

unconstrained

(otherwise to

maintain output

accuracy size of the

DNN will have to be

greatly increased)

8

• Apply common logic expression extraction to share

resources among outputs of a layer (steps I thru V)

Optimizing Layers

𝑎0

𝑎1

𝑎2

𝑎0

𝑎1

𝑎2

𝑎0

𝑎1

𝑎2

𝑎0

𝑎1

𝑎2
𝑎0

𝑎1

𝑎2

𝑓1

𝑓2

𝑓0

𝑓0

𝑓1

𝑓2

𝑓0

𝑓1

𝑓2

Ⅰ Ⅱ

Ⅲ

ⅣⅤ

// Optimized

logic requires

7 logic gates

while

implementing

each neuron

individually

requires 13

logic gates in

total.

9

• The size of truth table grows exponentially with the number of

inputs to a neuron

• Leads to scalability issues

• For each neuron, define an incompletely specified Boolean

function by considering input combinations, which are encountered

when we apply the training data to the neural network

• Permutations that lead to an output of 1 constitute the ON-set

• Permutations that lead to an output of 0 constitute the OFF-set

• Permutations that are not encountered constitute the DON’T CARE-set

(DC-set)

• Advantages

• Small number of entries specified in the truth table

• Increased potential for logic optimization

Optimizing Neurons with a Large Number of Inputs

10

• Assume the depicted

neuron never

encounters the

following input

permutations:

• 𝑎0𝑎1𝑎2 = 000

• 𝑎0𝑎1𝑎2 = 110

• This allows defining

a DC-set which in

turn enables further

optimization of the

logic function of the

output signal

Example

𝑎0

𝑎1

𝑎2

𝑎0

𝑎1

𝑎2

𝑓

11

1. Sort cubes of ON-set in increasing order of probability of
being covered by the expansion of other cubes

1. Define a weight matrix where each row corresponds to a
cube in the ON-set, each column corresponds to a variable in
the cube, and 0/1 values are replaced with −1/+1.

2. Find the dot product of each row with the column sum of
weight matrix

3. Sort the outputs of dot product in increasing order of values
(Pick randomly when there is a tie)

• For the previous example:

ON-set Weight Matrix Column Sums Dot Product

001 -1 +1 +1 +2 +2 +2 +2

110 +1 +1 -1 +2

101 +1 -1 +1 +2

111 +1 +1 +1 +6

Generating a Prime & Irredundant Cover

12

2. Raise variables in an uncovered cube of sorted ON-set

while maintaining orthogonality with OFF-set

• Make prime

3. Mark all cubes in the sorted ON-set that are covered by the

prime cube as covered

• Do single cube containment

4. Repeat steps 2 and 3 until we get a prime and irredundant

cover of the function

Prime & Irredundant Cover (Cont’d)

// The expand and make_irredundant functions consist of a number of highly parallelizable

for loops => Can speed up optimization by writing a multi-threaded CPU program or a

CUDA program to run the function on GPUs.

13

// We can apply logic optimizations across two or more consecutive layers at the same time.

We may also use min-cut partitioning to reduce memory accesses for intermediate values.

Summary of the Realization Method

// Use the Glow compiler to map to hardware accelerators

designed for processing neural networks

// The first and last layers are optimized

separately using full quantization to

achieve an overall acceptable performance

14

• Logic synthesis allows optimizing individual neurons, layers, and

collections of layers that constitute the neural network

• Two-level logic minimization algorithms are utilized to find an

efficient implementation for neurons defined using an

incompletely specified function

• Multi-level logic minimization algorithms are utilized to optimize

groups of neurons within a single layer or multiple layers across a

neural network

• Common logic expression extraction

• SAT-based resource sharing

• Retiming to minimize register count

• Can improve performance by pipelining and/or register retiming

Full Suite of Logic Optimization Techniques

15

• Map the optimized netlist directly to hardware (e.g. FPGA)–

similar to Microsoft Brainwave

• Weights are stored on the FPGA’s BRAM

• Best achievable latency

• High resource consumption (without any resource reuse)

• Compile the high-level graph defined in Python (PyTorch)

onto a CPU, a GPU, or a specialized hardware accelerator

• For example, Intel CPUs are capable of performing 1,024

AND/NAND/OR/XOR operations in a single cycle

• The compiler needs to find 1,024 independent bitwise

operations defined in the high-level graph and pack them

together to optimize for Intel CPUs

Mapping to Hardware

16

Forward Propagation in MLPs

// All operations are similar to

those for MLPs (multi-layer

perceptrons), except the

activation function, which is

replaced with the sign

function.

17

• MNIST dataset of handwritten digits

• 28x28 grayscale images

• 60,000 training samples

• 10,000 test samples

• Intel Arria 10 GT 1150 FPGA

• 427,000 adaptive logic modules (ALMs)

• 5,562,240 bits of block RAM

• 1,518 DSP blocks

• 32-bit floating-point multiply-accumulate operation

• 541 ALMs (this count constitutes our baseline)

• Latency: 34.68𝑛𝑠 (again latency of a single ALM is our

baseline)

Experimental Setup

18

• MLP architecture

• 784 – 100 – 100 – 100 – 10 (FC1 – FC2 – FC3 – FC4)

• CNN architecture

• Conv1: 3 × 3 × 1, 10 output channels, 2 × 2 max pooling

• Conv2: 3 × 3 × 10, 20 output channels, 2 × 2 max pooling

• FC1: 500 – 10 (fully connected)

Experimental Results – Accuracy

Neural

Network

Classification Accuracy (%)

Baseline SW-Q1 HW-Q1

MLP 98.27 96.89 97.01 (+0.12)

CNN 99.00 98.21 97.92 (-0.29)

• Baseline uses float-32 representation

• SW-Q1 represents the same neural network as the baseline with activations

quantized to binary values

• HW-Q1 is the neural network solution obtained by our proposed solution

19

• Improvements in optimized layers (layers 2 through 𝐿 − 1)
• 100% saving in storage required for model parameters

• 100% saving in memory accesses for reading model parameters

• The following table reports the overall improvements:

Experimental Results – Hardware Cost

Neural Network
Computation

MACs Latency

Memory
(Bytes)

MLP Baseline 20,000 14 80,800

HW-Q1 207 0.88 25

Improvement 97x 16x 3,232x

CNN Baseline 217,800 7 23,640

HW-Q1 3,630 0.41 514

Improvement 60x 17x 46x

// The setup is

somewhat in

favor of baseline

because it

assumes that all

weights and

activations can

be read once and

reused as many

times as needed

and that there are

an unlimited

number of

resources.

20

 Memory

 Reduce accesses to the memory

 Reduce storage requirements for model parameters

Model performance

 Cause little or no degradation on classification accuracy

 Computation

 Reduce the number of required resources

Goals

21

• Replace a few consecutive layers as a single equivalent

layer

• The truth table inputs are provided by the first green layer

while the outputs are evaluated at the second green layer

• In contrast to having a separate truth table for each pair of

consecutive layers

• The intermediate layers may be arbitrarily deep and/or wide

Ongoing Work: Vestigial Networks

22

• Binary quantization may lead to a substantial drop in

accuracy on relatively harder datasets

• LeNet-5 on CIFAR-10: 75.91%

• LeNet-5 on CIFAR-10 (binary activations): 57.05% (-18.86%)

• Multivalued quantization allows compensating accuracy loss

due to binary quantization

Multivalued Quantization

Neural

Network

Classification Accuracy (%)

Baseline SW-Q1 SW-Q2 SW-Q3 SW-Q4

LeNet-5 75.91 57.05% 68.75% 75.01% 76.17%

// Need to apply multivalued logic minimization in Espresso to find an optimized hardware

realization of the neural network.

23

• Use a clipped ReLU as the activation function

• Trainable clipping value

• Quantize activations using 𝑘 bits

Multivalued Quantization (Cont’d)

J. Choi et al., “PACT: Parameterized Clipping Activation for Quantized Neural Networks,” 2018.

0, (inf,0)

() 0.5(| | | |) , [0,)

, [, inf)

x

y PACT x x x x x

x

  

 

 


      
  

2 1
()

2 1

k

q k
y round y










// Lower  => lower quantization error

Higher  => closer resemblance of the stanard ReLU function

Set  high in the beginning to allow gradients to propagate.

24

• Memory is the bottleneck in processing deep neural

networks

• Energy consumption

• Latency

• This work presented a realization method that allows

inference without reading model parameters from memory

• There are a few solutions for compensating the accuracy

loss due to binary quantization (work in progress)

• The resulting solution will have the same level of accuracy as

the baseline while enjoying the benefits of proposed solution

Conclusion

