Cell Division: Weight Bit-Width Reduction Technique for Convolutional Neural Network Hardware Accelerators

Hanmin Park, Kiyoung Choi

Neural Processing Research Center
Design Automation Laboratory
Seoul National University
1. Motivation
 • Mismatch b/w two research communities: CNN inference bit-width reduction CNN inference HW accelerator design

2. Elaboration
 • Cell division technique applied to: Fully connected layer Convolutional layer

3. Discussion
 • How to suppress the number of new neurons
 • Applicability of cell division technique to recent researches

4. Conclusion
Motivation

• Data type for CNN inference HW accelerators
 ◦ Fixed-point format than floating-point format

• Design parameters of fixed-point format
 ◦ ulp (unit in the last place): Once decided, it is implicitly assumed throughout the computation.
 ◦ BW (bit-width): Largely affects chip-area, power, etc.
 ▪ In trade-off relation w/ CNN accuracy.
 ▪ Reduction efforts in two research communities.
Motivation

CNN inference bit-width reduction

• Inter-network BW opt
 (P. Judd et al., arXiv 2015)
 ◦ AlexNet on ImageNet:
 ▪ 10-bit weights
 ◦ GooLeNet on ImageNet:
 ▪ 9-bit weights

• Intra-network BW opt
 (D. Lin et al., ICML 2016)
 ◦ AlexNet-like CNN on ImageNet (5 conv layers):
 ▪ $\beta, \beta - 5, \beta - 4, \beta - 5$, and $\beta - 4$ bit weights

CNN inference HW accelerator design

• 16-bit weights:
 ◦ DaDianNao
 ◦ Eyeriss
 ◦ Stripes etc.

• 8-bit weights:
 ◦ TPU v1

Very (too) Pessimistic!
Motivation

CNN inference bit-width reduction

- Inter-network BW opt
 (P. Judd et al., arXiv 2015)
 - AlexNet on ImageNet:
 - 10-bit weights
 - GoLeNet on ImageNet:
 - 9-bit weights
- Intra-network BW opt
 (D. Lin et al., ICML 2016)
 - AlexNet-like CNN on ImageNet (5 conv layers):
 - β, $\beta - 5$, $\beta - 4$, $\beta - 5$, and $\beta - 4$ bit weights

CNN inference HW accelerator design

- 16-bit weights:
 - DaDianNao
 - Eyeriss
 - Stripes

We want to:
- Alleviate the pessimism.
- Make CNNs executable.

Very (too) Pessimistic!
1. Motivation
 • Mismatch b/w two research communities:
 CNN inference bit-width reduction
 CNN inference HW accelerator design

2. Elaboration
 • Cell division technique applied to:
 Fully connected layer
 Convolutional layer

3. Discussion
 • How to suppress the number of new neurons
 • Applicability of cell division technique to recent researches

4. Conclusion
Main Idea

• Start w/ a fixed-point quantized CNN:

 A quantization result (w/ 0.3 %p test accuracy drop):
 • \((\text{BW, ulp}) = (7, 2^{-6})\)
 • Range = \([-1, 1]\)

 Let’s assume we only have a HW accelerator that assumes 6-bit weights.
 \(\rightarrow\) Not executable w/o CNN accuracy drop.

 \(\text{float Wgt distribution of LeNet-5.conv1.}\)

• Cell division technique:

 \[a_{in} \cdot w = a_{in} \cdot \sum_i w'_i = \sum_i a_{in} \cdot w'_i\]

 where \(w \in [-1,1)\) and \(w' \in [-0.5, 0.5)\).

 • We target no specific HW support for this technique.
Cell Division for Fully Connected Layer

4-bit weights $\in [-8, 7]$

$$\begin{bmatrix}
0010 & 1100 \\
1110 & 1010 \\
0001 & 0011
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -4 \\
-2 & -6 \\
1 & 3
\end{bmatrix}$$

$$1010 \cdot a_{in} - b$$

3-bit weights $\in [-4, 3]$

$$\begin{bmatrix}
010 & 100 \\
110 & 100 \\
001 & 011 \\
000 & 110
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -4 \\
-2 & -4 \\
1 & 3 \\
0 & -2
\end{bmatrix}$$

$$(100 + 110) \cdot a_{in} - b = (100 \cdot a_{in} - b) + (110 \cdot a_{in} - 0)$$
Cell Division for Fully Connected Layer

- Part of the act-dup layer is the identity matrix.
- No HW modification req (w/ performance overhead).
- Biases of the neurons in the act-dup layer are all zero.
4-bit weights $\in [-8, 7]$

3-bit weights $\in [-4, 3]$

Input feature map's channel direction.

\exists 2 filters, originally.

A new filter is added.

$$0101 \cdot a_{in} - b$$

$$= (011 \cdot a_{in} - b) + (010 \cdot a_{in} - 0)$$
Part of the chn-fusing fltrs is the identify filters.

No HW modification req (w/ performance overhead).

Biases of the neurons in the chn-fusing fltrs are all zero.
Experimental Results

The Best Fixed-Point Quantization for Each CNN
LE: LSB’s Exp (\log_2 ulp)
BW: Bit-Width

<table>
<thead>
<tr>
<th>CNN</th>
<th>LE</th>
<th>BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeNet-300-100</td>
<td>-4, -4, -3</td>
<td>4, 4, 4</td>
</tr>
<tr>
<td>LeNet-5</td>
<td>-6, -4, -5, -5</td>
<td>7, 4, 3, 5</td>
</tr>
<tr>
<td>AlexNet</td>
<td>-8, -9, -9, -10, -9, -9, -9</td>
<td>8, 9, 9, 10, 9, 6, 7, 7</td>
</tr>
<tr>
<td>VGG-16</td>
<td>-7, -6, -8, -8, -8, -8, -9, -9, -9, -9, -9, -8, -8</td>
<td>8, 6, 8, 8, 9, 9, 8, 8, 8, 9, 8, 9, 5, 5, 5</td>
</tr>
</tbody>
</table>

Weight storage requirements according to cell-division’s target bit-widths (normalized to those of 16-bit fixed-point quantized CNNs).
1. Motivation
 • Mismatch b/w two research communities:
 CNN inference bit-width reduction
 CNN inference HW accelerator design

2. Elaboration
 • Cell division technique applied to:
 Fully connected layer
 Convolutional layer

3. Discussion
 • How to suppress the number of new neurons
 • Applicability of cell division technique to recent researches

4. Conclusion
Contents NOT in the Paper

FAQs
How to Suppress the Number of New Neurons

Weight Distribution

- Weight distribution of LeNet-5.conv1 (LE, BW) = (-6, 7)

- But this weight distribution characteristic per se is not enough!

The second reasoning is about my technique for further reducing # new neurons.

Only small portion of weights get cell-divisioned (9 out of 500 wgts).
How to Suppress the Number of New Neurons

One Cell Div w/ Multiple Synapse Divs

Cell Division Technique
Applicability to Recent Researches

• “Why are you referring to ancient (2015, 2016) quantization schemes?”
 ◦ “AlexNet on ImageNet is successful w/ only 3-bit wgts.”

• We wanted our approach to be as generic as possible.
 ◦ Basic
 ▪ Float training first → Fixed-point quantization, next.
 ◦ Advanced
 ▪ Fixed-point quantization during training.
 ▪ Mixed usage of float & fixed-point (C. Leng et al., AAAI 2018).

• TMI: We were very strict about DNN accuracy drop due to fixed-point quantization in the paper.
 ◦ 0.1 % training accuracy & 0.3 % test accuracy drop.
Applicability to Recent Researches

• Weight quantization levels (3 bits per weight):
 ◦ {-2, +2} → {-2, -1, 0, +1, +2}
 ◦ {-4, +4} → {-4, -2, -1, 0, +1, +2, +4}

• W/ layer-wise floating-point scaling factors

• Mathematical formulation as a mixed integer programs (MIP) enables:

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>{-2, +2}</th>
<th>{-4, +4}</th>
<th>Full Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-1</td>
<td>0.592</td>
<td>0.600</td>
<td>0.600</td>
</tr>
<tr>
<td>AlexNet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top-5</td>
<td>0.818</td>
<td>0.822</td>
<td>0.824</td>
</tr>
</tbody>
</table>

• Note that our technique can be applied here.
 ◦ {-4, +4} → {-2, +2} w/ more accuracy.
 ◦ Or no shift operations required at all.

Uses shift operations instead of multiplications.
1. Motivation
 • Mismatch b/w two research communities:
 CNN inference bit-width reduction
 CNN inference HW accelerator design

2. Elaboration
 • Cell division technique applied to:
 Fully connected layer
 Convolutional layer

3. Discussion
 • How to suppress # new neurons
 • Applicability of cell division technique to recent researches

4. Conclusion
Conclusion

• We proposed the **cell division technique**, which:
 ◦ Can reduce the fixed-point bit-width of CNN weights w/o any accuracy change.

• We also proposed the **activation duplication layer & channel fusing filters** for legacy CNN inference HW accelerators.

• The cell division technique enables:
 ◦ **Alleviating the pessimism** behind the weight bit-width selection when designing CNN inference HW accelerators.
 ◦ **Making CNNs executable** on CNN inference HW accelerator which assumes narrower weight bit-width.
THANK YOU