
A. Cornaglia†, A. Viehl†, O. Bringmann‡ and W. Rosenstiel‡

FZI Research Center for Information Technology†
University of Tübingen‡

ASP-DAC 2019
January 24, 2019
Outline

1 Introduction
2 Background
3 Methodology
4 Results
Outline

1 Introduction
2 Background
3 Methodology
4 Results
Timing Estimations for Embedded Software

- Necessity of Embedded Systems (ESs) properties assessment
 - Non-functional properties represent a key aspect
 - Different level of assessment during the development
- Timing predictions for the embedded application execution-time
 - Fast but accurate estimations (no Worst-Case Execution Time)
- Challenging and hard task due to several factors
 1. Predictions for multiple target platforms
 2. Hardware complexity and intellectual property restrictions
 3. Compiler optimizations
 4. Multiple input data
 5. Multiple soft-configuration of a single program instance
Variability in Embedded Systems
Variability in Embedded Systems

January 24, 2019

A. Cornaglia et al. - SIMULTime
Variability in Embedded Systems
Variability in Embedded Systems
Variability in Embedded Systems

Run-Time
Config. A
Config. B
The Challenge

1. Timing estimations for multiple variants in a single run
 - Run-time variability: conditional statements driven by a configuration
 - Variability on target platforms
 - Different hardware dependent compiler optimizations

2. Fast and accurate timing estimations
 - Support for the development phase of the system
 - In depth modelling implies undesired slow-down
 - Speed easily achievable by sacrificing the accuracy
Outline

1 Introduction
2 Background
3 Methodology
4 Results
The LLVM Compiler Infrastructure
Context-Sensitive Timing Database

- Context concept: string ruled by $\text{VIVU}(n,k)$ mapping
 - Set of control flow paths in interprocedural control flow graph (CFG)
 - n: maximum loop recursion count, k: number of elements upper limit
- Timing database (TDB) for implicit target platforms modeling
 - Relative execution times for the different program contexts
 - Accuracy for a single target system without needing a model of it
 - Generation from both static analysis and measurements

$\text{VIVU}(2, \infty)$

LLVM-IR Execution Engine and Matching

- *lli* directly executes LLVM-IR programs
 - Similar to a virtual machine it is not an emulator
 - Executes only instructions for the host architecture
- Two different execution engines are provided
 - Complex just-in-time compiler (JIT)
 - Slower but easier interpreter
- Possibility for LLVM-IR context-sensitive simulations
 - *lli* determines the common execution path in the IR CFG
 - Function for IR to multiple binary CFGs mapping\(^2\)
 - Association between HW independent code and multiple TDBs

Outline

1 Introduction
2 Background
3 Methodology
4 Results
SIMULTime Workflow

Information Extraction Phase

Source Code

Run-time variant parameters

Simulation Phase

Timing Predictions
SIMULTime Workflow

Information Extraction Phase

LLVM Compiler

clang & opt

Optimized IR

llc

Binaries

Source Code

Run-time variant parameters

Simulation Phase

Timing Predictions

January 24, 2019 7/10A. Cornaglia et al. - SIMULTime
SIMULTTime Workflow

Information Extraction Phase

1. LLVM Compiler
 - clang & opt
 - LLVM IR Analyzer

2. Traces Extractor
 - Binaries

3. TDB Generator
 - Timing Databases

Simulation Phase

Source Code
- Mapping Functions
- Run-time variant parameters

Timing Predictions
SIMULTime Workflow

Information Extraction Phase

1. **LLVM Compiler**
 - clang & opt

2. **Traces Extractor**

3. **TDB Generator**

4. **LLVM IR Analyzer**

5. **lli**

Simulation Phase

- Source Code
- Run-time variant parameters
- Mapping Functions

Timing Databases

Timing Predictions
Outline

1. Introduction
2. Background
3. Methodology
4. Results
SIMULTime Throughput and Accuracy

![SIMULTime Throughput and Accuracy Diagram](image-url)

- **VIVU(20,20)**
- **VIVU(∞,∞)**
- **%Error VIVU(20,20)**
- **%Error VIVU(∞,∞)**

Simulation Throughput [MIPS]

- **Prediction Error**

January 24, 2019 A. Cornaglia et al. - SIMULTime
Multiple Simultaneous Predictions Speedup

Simulation Throughput [MIPS]

1 TDB 2 TDBs 3 TDBs 4 TDBs

January 24, 2019
Conclusions and Future Work

- Multiple context-sensitive simulations based on the LLVM IR code
 - Exploration of different HW platforms and compiler optimizations
 - High accurate predictions even for complex architectures
 - One single run to provide significant speedup

- Prospective challenges
 1. JIT to increase the speedup by keeping the level of accuracy
 2. Support compile-time variability
 3. Reduce the TDB creation overhead
 4. Increase level of abstraction supporting model-based development
Thanks for your attention.

Questions?

Alessandro Cornaglia
cornaglia@fzi.de