A Robust Batch Bayesian Optimization for Analog Circuit Synthesis via Local Penalization

Jiangli Huang¹, Fan Yang¹, Changhao Yan¹, Dian Zhou², Xuan Zeng¹
¹State Key Lab of ASIC System, School of Microelectronics, Fudan University, China
²Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX, U.S.A
Outline

- Background
- Proposed method
- Experimental results
Background

Proposed method

Experimental results
Analog Circuit Synthesis

Unconstrained single-objective optimization problem:

\[
\text{minimize. } FOM(x)
\]

figure of merit (FOM) function
Background

Classical Approaches

Model-based approach
- Posynomial Approximation
- Geometric programming

Simulation-based approach
- Simulated annealing
- Particle swarm optimization
- Evolutionary algorithm

- Large number of circuit simulations
- Inaccurate optimal result

Low convergence rate
Bayesian Optimization

- Optimization Engine
 - Gaussian Process
 - Acquisition Function
 - Simulator

Initial dataset
Bayesian Optimization

Posterior distribution of Gaussian process and the EI acquisition function.
Batch Bayesian Optimization

- Gaussian Process
- Acquisition Function
- Simulator

Optimization Engine

Select batch of points each time
Initial dataset
Parallel evaluation

Background
Background

Simulation failure

- Gaussian Process
- Acquisition Function

Optimization Engine

Not be updated

No simulation results

Same unavailable points

Initial dataset
Outline

Background

Proposed method

Experimental results
Proposed method

Local Penalization

\[x_{t,k} = \arg \max_{x \in \mathcal{X}} \left\{ g \left(\alpha \left(x; D_t \right) \right) \prod_{j=1}^{k-1} \varphi \left(x; x_{t,j} \right) \right\} \]

Transformation to keep acquisition function positive

\[g(z) = \begin{cases} \ln(z) & z \geq 40 \\ \ln(\text{softplus}(z)) & z < 40 \end{cases} \]

Local penalizer

\[0 \leq \varphi \left(x; x_{t,j} \right) \leq 1 \quad \varphi \left(x; x_{t,j} \right) = \frac{1}{2} \text{erfc}(-z) \]

\[z = \frac{1}{\sqrt{2\sigma_n^2(x_{t,j})}} \left(L \| x_{t,j} - x \| - \mu(x_{t,j}) + M \right) \]
Forbidden Points Strategy

Forbidden points set: \mathcal{F}

$\mathcal{P}_t = \{x_{t,1}, x_{t,2}, \ldots, x_{t,k-1}\} \cup \mathcal{F}$

The distribution of EI and EI-LP function with unavailable zones.
Proposed method

Experiment on forbidden Points Strategy

An operational amplifier:

\[FOM = -0.5 \times CMRR - 2 \times gain - 0.6 \times GBW - 0.4 \times PSRR - 0.6 \times PM + 6 \times noise + 6 \times ID \]

The optimization results of the operational amplifier.

<table>
<thead>
<tr>
<th>Algo</th>
<th>Best</th>
<th>Worst</th>
<th>Mean</th>
<th>median</th>
<th>Avg. Sim fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCB-1</td>
<td>-385.52</td>
<td>-345.89</td>
<td>-354.2</td>
<td>-347.68</td>
<td>14</td>
</tr>
<tr>
<td>El-1</td>
<td>-427.75</td>
<td>-345.89</td>
<td>-379.98</td>
<td>-365.62</td>
<td>9</td>
</tr>
<tr>
<td>MACE-1</td>
<td>-376.16</td>
<td>-345.89</td>
<td>-353.96</td>
<td>-350.13</td>
<td>15</td>
</tr>
<tr>
<td>RBBO-4</td>
<td>-457.41</td>
<td>-407.91</td>
<td>-443.49</td>
<td>-452.12</td>
<td>37</td>
</tr>
<tr>
<td>MACE-4</td>
<td>-426.06</td>
<td>-389.5</td>
<td>-415.16</td>
<td>-419.04</td>
<td>56</td>
</tr>
<tr>
<td>BLCE-4</td>
<td>-403.07</td>
<td>-345.89</td>
<td>-366.83</td>
<td>-364.56</td>
<td>59</td>
</tr>
</tbody>
</table>
Proposed method

Experiment on forbidden Points Strategy

The convergence plot for optimization results.
The distribution of EI, EI-LP and EI-ALP functions at the early stage of optimization.
Outline

- Background
- Proposed method
- Experimental results
Experimental results

Two-Stage Operational Amplifier

minimize. \(FOM = -5 \times gain - 8 \times UGF - 1.6 \times PM \)

The optimization results of the two-stage operational amplifier.

<table>
<thead>
<tr>
<th>Algo</th>
<th>Best</th>
<th>Worst</th>
<th>Mean</th>
<th>median</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCB-1</td>
<td>-729.89</td>
<td>-665.57</td>
<td>-676.86</td>
<td>-665.57</td>
</tr>
<tr>
<td>El-1</td>
<td>-861.69</td>
<td>-710.72</td>
<td>-780.61</td>
<td>-776.97</td>
</tr>
<tr>
<td>MACE-1</td>
<td>-889.66</td>
<td>-763.48</td>
<td>-844.42</td>
<td>-859.81</td>
</tr>
<tr>
<td>RBBO-4</td>
<td>-910.27</td>
<td>-900.36</td>
<td>-907.90</td>
<td>-908.69</td>
</tr>
<tr>
<td>MACE-4</td>
<td>-910.27</td>
<td>-900.07</td>
<td>-906.68</td>
<td>-907.62</td>
</tr>
<tr>
<td>BLCB-4</td>
<td>-886.28</td>
<td>-829.45</td>
<td>-861.88</td>
<td>-863.67</td>
</tr>
</tbody>
</table>
Experimental results

Class-E Power Amplifier

The optimization results of the class-E power amplifier.

```
minimize. \( FOM = Pdc - 6 \times Pout \)
```

<table>
<thead>
<tr>
<th>Algo</th>
<th>Best</th>
<th>Worst</th>
<th>Mean</th>
<th>median</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCB-1</td>
<td>-8.53</td>
<td>-7.66</td>
<td>-7.82</td>
<td>-7.66</td>
</tr>
<tr>
<td>RBBO-4</td>
<td>-9.82</td>
<td>-9.25</td>
<td>-9.62</td>
<td>-9.70</td>
</tr>
<tr>
<td>MACE-4</td>
<td>-9.73</td>
<td>-9.47</td>
<td>-9.6</td>
<td>-9.6</td>
</tr>
<tr>
<td>BLCB-4</td>
<td>-9.48</td>
<td>-9.04</td>
<td>-9.22</td>
<td>-9.2</td>
</tr>
</tbody>
</table>
Thanks!