Word Level Functional Coverage Computation

Bijan Alizadeh

Microelectronic Research and Development Center of IRAN (MERDCl)

ASP-DAC 2006

Agenda

1. Introduction

2. Word-level Structures
3. Proposed Environment
4. Coverage Computation
5. Experimental Results
6. Future Works

1. Introduction Industry Forces

Time-to-market

 Design ComplexityShortage of Skilled Engineers

IC / AcIC Docigno Nuquining incepimehy_5law

2. Word-level Structures

Taylor Expansion Diagram (TED)

Arithmetic Function (F: Integer \rightarrow Integer)

- Treat F as a continuous function
- Taylor expansion (around $X=0$):

$$
F(X)=F(0)+X * F^{\prime}(0)+1 / 2 * X^{2} * F^{\prime} \cdot(0)+\ldots
$$

Notation

- $F_{0}(x)=F(x=0)$

0-child --- - -

- $F_{1}(x)=F^{\prime}(x=0)$

1-child

- $F_{2}(x)=1 / 2 F^{\prime \prime}(x=0) \quad 2$-child $======$
- etc.

2. Word-level Structures
 TED Example

$$
\begin{aligned}
& \text { (A) }--F_{0}(A)=F_{\mid A=0}=2 C+3 \\
&-F_{1}(A)=F_{\mid A=0}^{\prime}=2 A B_{\mid A=0}=0 \\
&= F_{2}(A)=1 / 2 F_{\mid A=0}^{\prime \prime}=B \\
& \text { (B) }- B_{0}=B(0)=0 \\
&- B_{1}=B^{\prime}=1 \\
& \text { (C) }- G_{0}(C)=(2 C+3)_{\mid C=0}=3 \\
&- G_{1}(C)=(2 C+3)^{\prime}=2
\end{aligned}
$$

$$
F=A^{2} B+2 C+3
$$

(without normalization)
2. Word-level Structures

TED Limitations
-Represent relational expressions ($\mathrm{X}<\mathrm{Y}$) by using bit expansion

- Normalization: More complicated than in *BMD

3. Proposed Environment Hierarchical Integer Equations

Property Description

Solve Equations implicitly

3. Proposed Environment DFG Extraction

$>A$ table based representation of the design

3. Proposed Environment
 New Word-level Structure: Linear TED

Algebraic Expression

$F(x, y, \ldots)=$ constant part $+x *($ linear part $)$
Where x is top variable of $\mathrm{F}(\mathrm{x}, \mathrm{y}, \ldots)$

Six Nodes

Constant (C)
Variable (V)
Relational Variable (RV)
Branch node (BR) is described as follows:
F = Select.InOne + Not(Select).InZero

Union (U) and Intersect (I) nodes are the same as Disjunction and Conjunction operations
3. Proposed Environment

LTED Example
IF (a) THEN $X<=b+c$
ELSE

$$
x<=b-c
$$

Variable Node

3. Proposed Environment
 Union and Intersect Operations

$$
\begin{array}{ll}
\text { I: } X+2 Y-1>0 & \rightarrow a 0=1 ; b 0=2 ; c 0=-1 \\
\text { II: } 2 X+4 Y-4>0 & \rightarrow a 1=2 ; b 1=4 ; c 1=-4
\end{array}
$$

Parallel

a0*b1=a1*b0
Both Upward direction Greater Than Operator a0*a1 + b0*bl > 0 b0 > 0
(I) is below (II)
c0*b1 - c1*b0 > 0

3. Proposed Environment

Hierarchical Integer Equation Representation

$>$ DFG to Integer Equations

Next State Present State Value of Next Stat

Related pr esent state or -1for Output and Inter mediate sianals Value of specified Next state signal based on LTED nodes

List of Next state, Output and Inter mediate signals

3. Proposed Environment Property Description

Property (Q)

Linear time logic: $\mathrm{Q}::=\{\mathrm{P} 1=>\mathrm{P} 2\}$

Q Subdivides into

1) Assumption Part (P 1): can be specified at different times

$$
\begin{aligned}
P::= & (P)|P \wedge P| \neg P|P=P| P>P|P>=P| P \neq P \mid \text { time }=i, P \mid \\
& \text { time }=[i \text { to j], } P \mid \text { Variable } \mid \text { IntegerValue }
\end{aligned}
$$

2) Commitment Part (P2)

$$
\begin{aligned}
P::= & (P)|P \wedge P| \neg P|P=P| P>P|P>=P| P \neq P \mid \text { time }=i, P \mid \\
& \text { time }=[i \text { to } j], P \mid \text { Variable } \mid \text { IntegerValue }
\end{aligned}
$$

3. Proposed Environment
 Implicit Solving Method

1. Propagation Phase

Extract LTED value of specified signal from table-based representation of the design

Propagate constant value and relational operator into the LTED structure of the signal (new LTED)

2. Simplification Phase

Apply assumptions to new LTED
Simplify it

3. Proposed Environment
 Example: Greatest Common Divisor

3. Proposed Environment First Step: DFG Extraction

Data Flow Graph of nxtX \& X signals

3. Proposed Environment

Second Step: Integer Equations Conversion

List of Next state,		
Output and		
Intermediate signals		
Next State	Present State	Value of Next State present state
or -l for Output and		
Intermediate signals		

3. Proposed Environment

Second Step: Integer Equations Conversion

Integer Equation form of nxtX signal

4. Coverage Computation

Example: Property Checking

Property:
\{time=1, Start=0 \& Reset=0 \& X=10 \& Y=5
\Rightarrow time $=2, X=5\}$

1. Assumptions (time=1):

Start $=0 \&$ Reset $=0 \& X=10 \& Y=5$
2. Commitment (time $=2$): $X=5$

$$
\text { time }=2, X=5 \text { means } n x t X=5 \cdots>n x t X-5=0
$$

4. Coverage Computation
 Example: Property Checking

1. Extract value of $n x t X$ signal from the table

2. Propagation Phase

4. Coverage Computation

Example: Property Checking

3. Simplification

Start=0; Reset=0; X=10; Y=5

4. Coverage Computation
 Parameters

1. All Paths

2. Covered Paths

4. Coverage Computation

Definition

Coverage =

Number of Covered Paths/ Number of All Paths

```
int NumberofAIIPaths(LTED In)
if(In->type== Branch)
    if(pln1->type!=Branch)
        if(pInO->type!=Branch) return 2;
        else return NumberofAllPaths(pIn0)+1;
    else if(pInO->type!=Branch)
        return NumberofAlIPaths(pIn1)+1;
```

 else
 returnNumberofAllPaths(pln0)+NumberofAllPaths(pln1)+1;

5. Experimental Results

Circuit		TLC	GCD	SAYEH	EL	2CA
SN		hwyl	X	DataBus	door	cntl1
P3	WLM	12.1	0.03	11.6	0.21	0.1
	PC	20%	25%	10%	33.3%	25%
	VIS	19.2	0.13	NS	4.7	0.9
P4	WLM	0.4	0.03	12.1	--	0.01
	PC	20%	25%	20%	--	25%
	VIS	0.9	0.14	39.8	--	0.1
TC		80%	100%	55%	100%	100%
N	WLM	60	32	1612	87	62
	VIS	974	968442	419062	20418	39381
M	WLM	5.3	4.5	10.3	4.1	5.1
	VIS	10.1	36	26.48	5.2	5.5

SN: Signal Name
P3: Cpu Time of Property3 (Sec.) P4: Cpu Time of Property4 (Sec.)

WLM : our Word Level Method

PC: \% Property Coverage

TC: \% Total Coverage
N : Number of Nodes (LTED,BDD)

M: Memory Usage (M egaByte)

6. Future Works

- More Metrics
- Efficient Implementation
- Support Higher Order Expressions

7. Good bye

Thanks for your attention

Questions?

