Discovering the Input Assumptions in
Specification Refinement Coverage

P. Basu, S. Das, Pallab Dasgupta, P.P. Chakrabarti

Dept. of Computer Science & Engineering,
Indian Institute of Technology Kharagpur, India

Formal-V Group, IIT KGP)

The state of Formal Property Verification

* We know the benefits
— Non-ambiguous specification of the design intent
— Exhaustive verification of the specified intent

* We have the languages for specification
— Examples include SVA, PSL, OVL

° ... but the technology does not scale
— State explosion
— Significant advances in the engineering of FPV tools
— ... N0 hope beyond a point due to complexity barrier

Formal-V Group, IIT K.

How are we able to develop
complex designs?

We formulate the design intent

m Arch Specs

[&

L
U

=

... Which is too hard to
implement as a single
module

Formal-V Group, IIT I-

\ 4

|

T
¢

The notion of Design Refinement

Design refinement

i |

Verification of the Design Intent

Today we can express the >
design intent formally ...

m Arch Specs

m Formal
Arch Specs %

... but we cannot verify

formally due to capacity r\
limitations

]

Formal-V Group, IIT I-

... SO0 we use FPV locally

m Formal
Arch Specs
... but this does not

guarantee compliance
with the Arch. Specs

RTL Specs

Formal specs of M1
Formal specs of M2

\ 4

Formal specs of Mk - /

Formal-V Group, IIT KGP)

Design Intent Coverage

m Formal
Arch Specs
Does the RTL specs
cover the Arch Specs?

This is not an equivalence checking
RTL Specs problem between formal specs

HEENSPEEE @iluh The RTL specs should not admit any
Formal specs of M2 run that refutes the Arch Specs

Formal specs of Mk

Formal-V Group, IIT KG.

Design Intent Coverage

* Formal methods for comparing temporal specs
at different levels of abstraction
— Formalization and algorithms [DATE’04, ICCAD’04]
— How to present the gap?

* The SpecMatcher Tool
— Presents the gap as a set of missing properties
— Main challenge - preservation of syntactic style

— Detailed paper to appear in |EEE TCAD

Formal-V Group, IIT K.

Design refinement

The Specification Refinement Flow

<

|

*; \E m Arch Specs l
Intent
ﬁ Coverage
// \\ //
// \\\ ﬁ /// \ Intent
Vi \ / \\ Coverage

Unit level specs

[Unit level Validation
| (Simulation + FPV)

Formal-V Group, IIT K.

<

Specification refinement

What shall we do with the gap?

* [f there is a gap between the original specs and
the refined specs, then
— Intent coverage analysis demonstrates this gap

— What should the validation engineer do with this gap?
* Add more properties to close the gap
* What if no new properties can be conceived?

* Can we use the gap in generating the simulation
test plan?

— Often the gap lies in behaviors corresponding to
specific input scenarios

— Qur goal in this work is to formally find such scenarios
and direct simulation towards such coverage points

Formal-V Group, IIT KGP)

The Specification Refinement Flow

- ' System-level
dé Arch Specs ! test plan
@ Intent
= Coverage
(¥
o O .
c
k=) m O Block-level
o / \\ ﬁ / test plans
O - - \\\ /// \ Intent
v Vi \ / \\ Coverage
T 1 - \)
/ﬁﬁ al g
/ / \ \
e 08 08
|
|
|

Unit level specs

[Unit level Validation
| (Simulation + FPV)

Formal-V Group, IIT K. 10

Technical Challenges

* Finding the scenarios that trigger a given
formal property

— Key problem in automatic test generation from
properties

* Enabling the triggering scenarios during

simulation

— Finding the sequence of input constraints and coding
them into a constraint random test environment

Formal-V Group, IIT K.

11

A toy example

PR g1 A: G(riO Xg1)

r2— —»92

‘3 3 R1: M0O-~r30 Xg1
" "9 R2: G(riOr20 Xg1)

Given that the DUT satisfies R1 and R2, what are the scenarios
that need to be verified in order to guarantee A?

* In the first cycle we should drive r1 (1~ r2 [1r3, because all
other relevant cases are covered by R1 and R2

* In the subsequent cycles, the interesting inputis r1 - r2,
because the other cases are covered by R2.

Our formal methodology produces the input constraint:
(rMO0-r20r3)OXF(r10-1r2)

Formal-V Group, IlIT KG. 12

Coverage Algorithm

1. Compute U=A[-R
3. IfUis not valid then

(a) Unfold U up to its fixpoint to create two sets of
uncovered terms - U, the disjunction of terms

before fixpoint, and U,;, the disjunction of terms
at the fixpoint.

(b) Eliminate signals belonging to AP, — AP, from both
using universal elimination

(c) Eliminate non-inputs from U and U,

(d) Combine the two — call it |

(e) Return I, == |, How do we perform Step 2(c) ?

Formal-V Group, IIT K.

13

Elimination of non-inputs

* A property f1 is stronger than a property f2 iff f1 O 2,
but the converse is not true

* Given a property, f, defined over input variables, |, and
non-inputs, O, we generate a formula S, over | that is

stronger than f.

— Since S; is stronger than f, it follows that S, describes
input scenarios that make f vacuously true

— Therefore we restrict the input space by = S,, which
covers all non-vacuous runs of f.

— The rules for strengthening f are presented in the
paper

Formal-V Group, IIT KGP)

14

Prototype Implementation

* The algorithms for finding the input constraints
are now part of the SpecMatcher tool

— We have also formalized a methodology for importing
the constraints into a constrained random System
Verilog test bench

— Test cases used:
* Arm AMBA AHB
* Cache access logic
* Two Intel test cases

Formal-V Group, IIT I- 15

Forthcoming methodology

* Automatic test generation from formal
properties

— Modeling the problem as a game between the test
bench and the DUT

— Drives non-vacuous test inputs wrt given property

— Test generator implemented using the Direct-C
interface of System Verilog

— Methodology for importing the test generator into a
constrained random test bench

Formal-V Group, IIT P.

16

Our home:
http://www.facweb.iitkgp.ernet.in/~pallab/forverif.html

Thank you very much!!

Formal-V Group, IIT I.

17

