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Importance of Communication Architectures

� Improving process technology has led to increasing number 
of cores being integrated on a single SoC
� Tens to hundreds of cores in today’s MPSoCs

� Sharp increase in overall on-chip communication
� Next generation of multimedia, broadband and networking apps
� Communication is fast becoming a major design bottleneck! 

� Standard bus architectures such as AMBA, CoreConnect
and STBus are popular choices for handling on-chip 
communication
� Relatively simple to design
� Low area overhead
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Typical Bus-based Communication 
Architectures for SoCs
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Bus Matrix Communication Architectures

� Recent trend has been to use Bus Matrix communication 
architectures to support high bandwidths for modern 
MPSoC systems
� AMBA, CoreConnect, STBus all support matrix configurations
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Bus Matrix Communication Architectures

� A major drawback of a full bus matrix architecture is that it 
connects every master to every slave with a bus
� Results in prohibitively large number of busses
� High cost of implementation!
� Practically impossible to route and achieve timing closure

� One solution is to “tailor” the bus matrix according to the 
application, to create a partial bus matrix which still meets 
application performance requirements
� Has fewer busses

¾ Consequently fewer arbiters, decoders, buffers
� Maximizes bus utilization
� Reduces implementation cost, area and power dissipation
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Bus Matrix Communication Architectures
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� Goal is to automatically synthesize a partial bus matrix with
minimal number of buses, and which meets all performance 
requirements of the application
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Related Work
� Need for Bus Matrix Communication Architectures

� Ryu et al. [DSS 2001], Lahtinen et al. [ISCAS 2003] compared bus 
matrix with other bus based topologies
¾ bus matrix outperformed the other choices due to its superior 

parallel response

� Loghi et al. [DATE 2004] presented exploration studies with the 
AMBA and STBus shared bus, full matrix and partial matrix 
topologies
¾ matrix topologies are much better suited for high throughput 

systems requiring frequent parallel accesses
¾ partial matrix schemes can perform just as well as the full matrix 

architectures, if designed carefully
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Related Work
� Plenty of work in area of shared/hierarchical bus synthesis

� Lahiri et al [ICCAD 2000], Lyonnard et al [DAC 2001]
� Pinto et al [DAC 2002], Ryu et al [DATE 2003]
� Pasricha et al [ASPDAC 2005], [DAC 2005]

� However, very few research efforts have looked at bus 
matrix synthesis
� Ogawa et al. [DATE 2003] proposed a transaction based simulation

environment to explore and design a bus matrix
¾ manually specify topology, arbitration scheme, memory mapping
¾ too time consuming

� Murali et al. [DATE 2005] come closest to our goal of automated 
application specific bus matrix synthesis. However, 
¾ work focuses on automated matrix topology synthesis
¾ communication parameters which considerably influence system 

performance are not synthesized
¾ our approach synthesizes both topology AND parameter values
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MPSoC Performance Constraints

� MPSoC designs have performance constraints that can be 
represented in terms of Data Throughput Constraints

� Communication Throughput Graph, CTG = G(V,A)
incorporates SoC components and throughput constraints

� Throughput Constraint Path (TCP) is a CTG sub-graph
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Problem Formulation

� Given:
� an MPSoC with performance constraints
� a target bus matrix communication architecture (e.g. AMBA, STBus)

� Assumptions:
� hardware-software partitioning has been done already
� IPs are standard non-modifiable “black box” components
� memories can be split and modified
� busses within a bus matrix have the same data bus width, 

¾ typically depends on number of data interface pins of the IPs in the design

� Goals:
� automatically synthesize bus matrix topology AND parameter values 
� minimize number of busses in matrix 
� satisfy all throughput constraints in the design
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Bus Matrix Synthesis (BMSYN) Approach
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� to ensure that our approach generates realistic CA 

� discrete set of valid values for CA parameters
e.g. bus widths which are multiples of 8 bits, upto 64 bits

� allows designer to bias the synthesis process based on 
knowledge of design and target technology
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Bus Matrix Synthesis (BMSYN) Approach
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Branch and Bound Clustering Algorithm
� Goal: cluster slave modules to minimize matrix cost

� Start by clustering two slave clusters at a time
� Initially, each slave cluster has only one slave

� However, the total number of clustering configurations 
possible for n slaves is (n! x (n-1)!)/2(n-1)

� Extremely large number for even medium sized SoCs!

� Solution: use a powerful Bounding function
� Called after every clustering operation
� Uses lookup table to discard duplicate clustering ops
� Discards non-beneficial clustering (i.e. no savings in no. of busses)
� Discards incompatible clustering 

¾ e.g. mergers of busses with conflicting bus speeds
� Discards clustering which violates b/w requirements
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Bus Matrix Synthesis (BMSYN) Approach
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Case Studies

� To evaluate effectiveness of our synthesis approach, we 
applied it to 4 MPSoC applications from networking domain
� VIPER, SIRIUS – variants of existing industrial strength applications
� ORION4, HNET8 – larger systems derived from next-gen MPSoCs

Number  of cores in MPSoC applications

29138HNET8
2484ORION4
1953SIRIUS
1542VIPER

SlavesMastersProcessorsApplications
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SIRIUS MPSoC
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SIRIUS MPSoC
Throughput Constraint Paths (TCPs)

Communication Parameter  Constraint Set

Target bus matr ix architecture: AMBA3 AXI bus matr ix

2.8 GbpsARM3, DMA , Network I/F3, MEM5
240 MbpsASIC1, ARM3, SDRAM1, Acc1, MEM5, Network I/F2
1.4 GbpsARM2, MEM4, DMA, Network I/F3
5.2 GbpsARM2, Network I/F1, MEM3 
480 MbpsARM1, MEM2, MEM6, DMA, Network I/F2
640 MbpsARM1, MEM1, DMA, SDRAM1

Throughput 
Requirement

IP cores in Throughput Constr aint Path (TCP)

1 – 8 OO buffer size
static, RR, TDMA/RRarbitration strategy
25, 50, 100, 200, 300, 400bus speed
ValuesSet
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SIRIUS Synthesized Output
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Comparison with Related Work

� To compare quality of our synthesis results, we chose the 
closest existing piece of work, by Murali et al. [DATE 2005] 
� deals with automated matrix synthesis with the aim of minimizing

number of busses

� Since their approach only generates matrix topology, we 
restricted our comparison to the number of busses in the 
final synthesized design
� Our approach generates both matrix topology and parameter values

� Their “threshold-based” approach requires the designer to 
statically specify 
� maximum number of slaves per cluster
� traffic overlap threshold

¾ which if exceeded prevents two slaves from being assigned to the
same bus cluster



ASPDAC 2006 #25

Comparison with Related Work
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Comparison of Number of Busses

� We compared the number of busses in a 
� full bus matrix, 
� maximally connected reduced matrix and 
� the final synthesized bus matrix, with BMSYN
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Conclusion
� We presented an approach for the automated synthesis of 

bus matrix communication architectures (BMSYN) 

� BMSYN satisfies all performance constraints and generates
� topology for bus matrix, having a minimal number of busses
� values for matrix parameters

¾ bus speeds, OO buffer sizes and arbitration strategies 

� Results from synthesis for 4 industrial strength MPSoC 
applications show a significant reduction in bus count 
� 9X reduction vs. full bus matrix 
� 3.2X reduction vs. maximally connected reduced matrix

� In the present and near future, bus matrix communication 
architectures can efficiently support MPSoC systems 
� with tens to hundreds of cores
� several data throughput constraints in the multiple gigabits/sec range
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Thank you!

sudeep@cecs.uci.edu
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