
ASPDAC 2006 #1Copyright © 2005 UCI ACES Laboratory http://www.cecs.uci.edu/~aces

Sudeep Pasricha†, Nikil Dutt† and Mohamed Ben-Romdhane‡

†ACES (Architectures and Compilers for Embedded Systems) Lab
Center for Embedded Computer Systems (CECS)

University of California, Irvine
{sudeep,dutt}@cecs.uci.edu

‡Conexant Systems Inc
Newport Beach, CA

m.benromdhane@conexant.com

Constraint-Driven Bus Matrix
Synthesis for MPSoC

ASPDAC 2006 #2

Outline

� Motivation

� Related Work

� Problem Formulation

� Bus Matrix Synthesis (BMSYN) Approach

� Case Studies

� Conclusion

ASPDAC 2006 #3

Importance of Communication Architectures

� Improving process technology has led to increasing number
of cores being integrated on a single SoC
� Tens to hundreds of cores in today’s MPSoCs

� Sharp increase in overall on-chip communication
� Next generation of multimedia, broadband and networking apps
� Communication is fast becoming a major design bottleneck!

� Standard bus architectures such as AMBA, CoreConnect
and STBus are popular choices for handling on-chip
communication
� Relatively simple to design
� Low area overhead

ASPDAC 2006 #4

Typical Bus-based Communication
Architectures for SoCs

IP IP

IP IP

IP

IP

a) single bus
B

R
ID

G
E

IP IP

IP IP

IP

IP

b) hierarchical bus

IP IP

IP IP

IP

IP

d) point-to-point busc) split-bus

IP IP

IP IP

IP

IP

Not scalable to meet the communication demands of
modern high performance MPSoC systems!

ASPDAC 2006 #5

Bus Matrix Communication Architectures

� Recent trend has been to use Bus Matrix communication
architectures to support high bandwidths for modern
MPSoC systems
� AMBA, CoreConnect, STBus all support matrix configurations

ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3
DMA

Input
stage

arb

arb

arb

arb

arb

arb

arb

slavesarbiter s
matr ix

masters
Decode

Input
stage

Decode

Input
stage

Decode

Full Bus Matrix

ASPDAC 2006 #6

Bus Matrix Communication Architectures

� A major drawback of a full bus matrix architecture is that it
connects every master to every slave with a bus
� Results in prohibitively large number of busses
� High cost of implementation!
� Practically impossible to route and achieve timing closure

� One solution is to “tailor” the bus matrix according to the
application, to create a partial bus matrix which still meets
application performance requirements
� Has fewer busses

¾ Consequently fewer arbiters, decoders, buffers
� Maximizes bus utilization
� Reduces implementation cost, area and power dissipation

ASPDAC 2006 #7

Bus Matrix Communication Architectures

ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3
DMA

Input
stage

arb

arb

arb

arb

arb

arb

arb

slavesarbiter s
matr ix

masters
Decode

Input
stage

Decode

Input
stage

Decode

ARM1

ARM2

ITC

MEM2

ROM

MEM1

Timer

Network I/F

MEM3

DMA

Input
stage

Decode

Input
stage

Decode

Input
stage

Decode

arb

arb

arb
matr ix

partial bus matrix

� Goal is to automatically synthesize a partial bus matrix with
minimal number of buses, and which meets all performance
requirements of the application

ASPDAC 2006 #8

Outline

� Motivation

� Related Work

� Problem Formulation

� Bus Matrix Synthesis (BMSYN) Approach

� Case Studies

� Conclusion

ASPDAC 2006 #9

Related Work
� Need for Bus Matrix Communication Architectures

� Ryu et al. [DSS 2001], Lahtinen et al. [ISCAS 2003] compared bus
matrix with other bus based topologies
¾ bus matrix outperformed the other choices due to its superior

parallel response

� Loghi et al. [DATE 2004] presented exploration studies with the
AMBA and STBus shared bus, full matrix and partial matrix
topologies
¾ matrix topologies are much better suited for high throughput

systems requiring frequent parallel accesses
¾ partial matrix schemes can perform just as well as the full matrix

architectures, if designed carefully

ASPDAC 2006 #10

Related Work
� Plenty of work in area of shared/hierarchical bus synthesis

� Lahiri et al [ICCAD 2000], Lyonnard et al [DAC 2001]
� Pinto et al [DAC 2002], Ryu et al [DATE 2003]
� Pasricha et al [ASPDAC 2005], [DAC 2005]

� However, very few research efforts have looked at bus
matrix synthesis
� Ogawa et al. [DATE 2003] proposed a transaction based simulation

environment to explore and design a bus matrix
¾ manually specify topology, arbitration scheme, memory mapping
¾ too time consuming

� Murali et al. [DATE 2005] come closest to our goal of automated
application specific bus matrix synthesis. However,
¾ work focuses on automated matrix topology synthesis
¾ communication parameters which considerably influence system

performance are not synthesized
¾ our approach synthesizes both topology AND parameter values

ASPDAC 2006 #11

Outline

� Motivation

� Related Work

� Problem Formulation

� Bus Matrix Synthesis (BMSYN) Approach

� Case Studies

� Conclusion

ASPDAC 2006 #12

MPSoC Performance Constraints

� MPSoC designs have performance constraints that can be
represented in terms of Data Throughput Constraints

� Communication Throughput Graph, CTG = G(V,A)
incorporates SoC components and throughput constraints

� Throughput Constraint Path (TCP) is a CTG sub-graph

ARM1

ARM2

ITC

MEM1

ROM
MEM2

Timer

Network I/F

MEM3

DMA

1 Gbps

ASPDAC 2006 #13

Problem Formulation

� Given:
� an MPSoC with performance constraints
� a target bus matrix communication architecture (e.g. AMBA, STBus)

� Assumptions:
� hardware-software partitioning has been done already
� IPs are standard non-modifiable “black box” components
� memories can be split and modified
� busses within a bus matrix have the same data bus width,

¾ typically depends on number of data interface pins of the IPs in the design

� Goals:
� automatically synthesize bus matrix topology AND parameter values
� minimize number of busses in matrix
� satisfy all throughput constraints in the design

ASPDAC 2006 #14

Outline

� Motivation

� Related Work

� Problem Formulation

� Bus Matrix Synthesis (BMSYN) Approach

� Case Studies

� Conclusion

ASPDAC 2006 #15

Bus Matrix Synthesis (BMSYN) Approach

CTGCTG

IP
library

IP
library

matr ix
template
matr ix

template

TLM simulationTLM simulation constraint
set (Ψ)

constraint
set (Ψ)

all TCPs
met?

all TCPs
met?

output synthesized
matr ix architecture
output synthesized
matr ix architecture

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked solution
database

ranked solution
database

Select arbitration &
verify by simulation
Select arbitration &
verify by simulation

yes

no

global_optimizeglobal_optimize

max. connected
reduced matr ix

max. connected
reduced matr ix

minimize_designminimize_design

Inputs

Inputs

Output

Communication Parameter Constraint Set (Ψ)

� to ensure that our approach generates realistic CA

� discrete set of valid values for CA parameters
e.g. bus widths which are multiples of 8 bits, upto 64 bits

� allows designer to bias the synthesis process based on
knowledge of design and target technology

ASPDAC 2006 #16

Bus Matrix Synthesis (BMSYN) Approach

CTGCTG

IP
library

IP
library

matr ix
template
matr ix

template

TLM simulationTLM simulation constraint
set (Ψ)

constraint
set (Ψ)

all TCPs
met?

all TCPs
met?

output synthesized
matr ix architecture
output synthesized
matr ix architecture

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked solution
database

ranked solution
database

Select arbitration &
verify by simulation
Select arbitration &
verify by simulation

yes

no

global_optimizeglobal_optimize

max. connected
reduced matr ix

max. connected
reduced matr ix

minimize_designminimize_design

Remove unused busses; migrate slaves to local busses

To obtain application specific data traffic statistics, such as
- number of transactions on a bus
- average transaction burst size on bus
- memory usage profilesARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3
DMA

Input
stage

arb

arb

arb

arb

arb

arb

arb

slavesarbiters
matr ix

masters
Decode

Input
stage

Decode

Input
stage

Decode

ARM1

ARM2

ITC
MEM1

ROM

MEM2

Timer

Network I/F

MEM3

DMA

global_optimize

ASPDAC 2006 #17

Branch and Bound Clustering Algorithm
� Goal: cluster slave modules to minimize matrix cost

� Start by clustering two slave clusters at a time
� Initially, each slave cluster has only one slave

� However, the total number of clustering configurations
possible for n slaves is (n! x (n-1)!)/2(n-1)

� Extremely large number for even medium sized SoCs!

� Solution: use a powerful Bounding function
� Called after every clustering operation
� Uses lookup table to discard duplicate clustering ops
� Discards non-beneficial clustering (i.e. no savings in no. of busses)
� Discards incompatible clustering

¾ e.g. mergers of busses with conflicting bus speeds
� Discards clustering which violates b/w requirements

ASPDAC 2006 #18

Bus Matrix Synthesis (BMSYN) Approach

CTGCTG

IP
library

IP
library

matr ix
template
matr ix

template

TLM simulationTLM simulation constraint
set (Ψ)

constraint
set (Ψ)

all TCPs
met?

all TCPs
met?

output synthesized
matr ix architecture
output synthesized
matr ix architecture

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked solution
database

ranked solution
database

Select arbitration &
verify by simulation
Select arbitration &
verify by simulation

yes

no

global_optimizeglobal_optimize

max. connected
reduced matr ix

max. connected
reduced matr ix

minimize_designminimize_design

prune OO buffer sizes
minimize bus clock speeds

CCATB simulation engine
Pasricha et al [DAC 2004]

ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3

DMA

level 2

ARM1

ARM2

ITC

MEM2

ROM

MEM1

Timer

Network I/F

MEM3

DMA

Input
stage

Decode

Input
stage

Decode

Input
stage

Decode

arb

arb

arb
matr ix

ASPDAC 2006 #19

Outline

� Motivation

� Related Work

� Problem Formulation

� Bus Matrix Synthesis (BMSYN) Approach

� Case Studies

� Conclusion

ASPDAC 2006 #20

Case Studies

� To evaluate effectiveness of our synthesis approach, we
applied it to 4 MPSoC applications from networking domain
� VIPER, SIRIUS – variants of existing industrial strength applications
� ORION4, HNET8 – larger systems derived from next-gen MPSoCs

Number of cores in MPSoC applications

29138HNET8
2484ORION4
1953SIRIUS
1542VIPER

SlavesMastersProcessorsApplications

ASPDAC 2006 #21

SIRIUS MPSoC

ARM1

ARM2

ARM3

DMA

ASIC1

Watchdog

UART

ITC1

ITC2

ROM1

ROM2

Timer1

Timer2

MEM1

MEM2

MEM3

MEM4

MEM5

Network I/F1

Network I/F2

Network I/F3

MEM6

SDRAM1

Acc1

protocol processor

network processor

network processor

hardware accelerator

ASPDAC 2006 #22

SIRIUS MPSoC
Throughput Constraint Paths (TCPs)

Communication Parameter Constraint Set

Target bus matr ix architecture: AMBA3 AXI bus matr ix

2.8 GbpsARM3, DMA , Network I/F3, MEM5
240 MbpsASIC1, ARM3, SDRAM1, Acc1, MEM5, Network I/F2
1.4 GbpsARM2, MEM4, DMA, Network I/F3
5.2 GbpsARM2, Network I/F1, MEM3
480 MbpsARM1, MEM2, MEM6, DMA, Network I/F2
640 MbpsARM1, MEM1, DMA, SDRAM1

Throughput
Requirement

IP cores in Throughput Constr aint Path (TCP)

1 – 8 OO buffer size
static, RR, TDMA/RRarbitration strategy
25, 50, 100, 200, 300, 400bus speed
ValuesSet

ASPDAC 2006 #23

SIRIUS Synthesized Output

ARM1

ARM2

ARM3

DMA

ASIC1

Watchdog

UART

ITC1

ROM1

ROM2

Timer1

Acc1

ITC2

Timer2

MEM2

MEM4

SDRAM1

MEM1

MEM6

MEM5

Network I/F2

Network I/F3

static

TDMA/RR

TDMA/RR

MEM3

Network I/F1

TDMA/RR

100

100

200

400

100

100

200

100

100

100

200

200

50

400

200

100

AXI Matr ix (32 bit)
- bus speed

OO(6)

OO(2)

OO(4)

BMSYN synthesizes a partial bus matrix with a 6x saving,
when compared to the original full bus matrix

bus speed

OO buffer size

arbitration scheme

ASPDAC 2006 #24

Comparison with Related Work

� To compare quality of our synthesis results, we chose the
closest existing piece of work, by Murali et al. [DATE 2005]
� deals with automated matrix synthesis with the aim of minimizing

number of busses

� Since their approach only generates matrix topology, we
restricted our comparison to the number of busses in the
final synthesized design
� Our approach generates both matrix topology and parameter values

� Their “threshold-based” approach requires the designer to
statically specify
� maximum number of slaves per cluster
� traffic overlap threshold

¾ which if exceeded prevents two slaves from being assigned to the
same bus cluster

ASPDAC 2006 #25

Comparison with Related Work

0
5

10
15
20
25
30
35
40

1 2 3 4 5

max. no. of slaves/cluster

no
. o

f b
us

se
s BMSYN

S(10)
S(20)
S(30)
S(40)

BMSYN produces a lower cost system (having lesser number of busses)
than an approach which requires the designer to statically approximate

application characteristics

ASPDAC 2006 #26

Comparison of Number of Busses

� We compared the number of busses in a
� full bus matrix,
� maximally connected reduced matrix and
� the final synthesized bus matrix, with BMSYN

60
95

192

377

29 34

80
114

13 16 25 42

0
50

100
150
200
250
300
350
400

VIPER SIRIUS ORION4 HNET8

Nu
m

be
r o

f B
us

se
s full

max conn.
final synth.

2.1x to 3.2x savings when compared to maximally connected bus matrix
4.6x to 9x savings when compared with full bus matrix

ASPDAC 2006 #27

Outline

� Motivation

� Related Work

� Problem Formulation

� Bus Matrix Synthesis (BMSYN) Approach

� Case Studies

� Conclusion

ASPDAC 2006 #28

Conclusion
� We presented an approach for the automated synthesis of

bus matrix communication architectures (BMSYN)

� BMSYN satisfies all performance constraints and generates
� topology for bus matrix, having a minimal number of busses
� values for matrix parameters

¾ bus speeds, OO buffer sizes and arbitration strategies

� Results from synthesis for 4 industrial strength MPSoC
applications show a significant reduction in bus count
� 9X reduction vs. full bus matrix
� 3.2X reduction vs. maximally connected reduced matrix

� In the present and near future, bus matrix communication
architectures can efficiently support MPSoC systems
� with tens to hundreds of cores
� several data throughput constraints in the multiple gigabits/sec range

ASPDAC 2006 #29

Thank you!

sudeep@cecs.uci.edu

ASPDAC 2006 #30

(12)3 (12)4 (12)5 34 35 45

(13)2 (13)4 (13)5 24 25 45

(24)1 (24)3 (24)5 13 15 35

14 15 23 24 25 34 3513 4512

(23)1 (23)4 (23)5 14 15 45

(14)2 (14)3 (14)5 23 25 35

B B B B B

B B B B

X B B B B
X X B B B

X B B X B B

X X B X B B

(123)4B (123)5 45B B

(124)3X (124)5 35B B

(13)(24) (13)5 (24)5X X

(23)(14) (23)5 (14)5X X

2 1 2 1 2

3 4

3

3

B

B

X – Duplicate solution
B – Bounded solution

1 – ITC
2 – Timer
3 – MEM1

root
4 – MEM2
5 – Network I/F

level 1

level 2

level 3

Branch and Bound Clustering Illustration
ARM1

ARM2

ITC
MEM1

ROM

MEM2

Timer

Network I/F

MEM3

DMA

best solution

ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3

DMA

level 2
ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3

DMA

level 1

