
A Unified Framework 
Processing False Paths and 

Multi-cycle Paths in Static 
Timing Analysis

Shuo Zhou, Bo Yao, Hongyu Chen, 
Yi Zhu, Chung-Kuan Cheng (UC San Diego),

Mike Hutton (Altera Corp.)



27-2

Outline
� Background and Problem Statement
� Static Timing Analysis (STA) 
� False Paths and Multi-cycle Paths
� Previous Works on False Paths
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� Unified Framework: Rules and Rule Sets 
� Rule Collection Minimization: Extension of our 

Previous Work [4]

� Experimental Results
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Overview of STA [1]

� Formulate combinational circuits between 
latches into graphs, G = {V, E}

re
gi

st
er

s

Combinational 
circuit (no loop)

re
gi

st
er

s

Combinational 
circuit (no loop)

re
gi

st
er

s

Common
Clock

Clock



27-4

21A C

Overview of STA (cont)
� Dynamic programming
� One forward sweeping: longest/shortest paths

� a(v)min=min(a(u)min+d(u,v)), a(v)max=max(a(u)max + d(u,v))
� General delay bounds, hd delay(path) ds

� One backward sweeping 
� Required arrival times and Slacks
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False Paths
�A path not logically realizable.

s=0, mux.out = mux.input0
s=1, mux.out =mux.input1
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Multi-cycle Paths
� A path signals propagate longer than one 

cycle.
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Statement of Problem
Given a set of false paths and multi-

cycle paths
� remove false path timing, and compute 

multi-cycle path slacks with multi-cycle 
required time in linear time.
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Previous Works on False Paths

� Labeling [2]: remove false path arrival times with 
tags.
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Previous Works (cont)
� Node splitting [3] :
� Create a new node for each tagged timing 
� Remove false paths by edge removal.
�Minimize #nodes be split.

� Two-direction propagation minimizes #tags [4].
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Contributions
� Unified Framework
�Represent false paths and multi-cycle paths as 

Exceptional Rules.
�Follow labeling approach[2] to deal with false 

paths and multi-cycle paths.
� Tag Minimization
�Follow two-direction propagation[4] to minimize 

#tags.
�Minimize #tags = Minimize #distinct arrival times 

=> improve analysis efficiency.
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Exceptional Rules
� Rule r 

� Gr = {Vr, Er}, sub graph
� Delay bounds (hr, sr), hrd delay(path) dsr.
� Rule priority p

� Rule sets through an edge, I(u, v)
� Rule sets from and to vertex v, F(v)/T(v)
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Use Rule Sets as Timing Tags[2]

� Prefix path p- at vertex v from PI to v
� Prefix Rule Set R(p-) contains rule r iff p- belongs to 

false paths or multi-cycle paths specified by r.
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Compute Rule Sets in Forward 
Sweeping: 
1) Primary inputs => R(p-) = F(v)
2) R(p-)' = (R(p-) �I(u,v)) �F(v)
3) R(p-)'�T(v) z � =>

rule r � R(p-)'�T(v) with 
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Tag Minimization

� When there are a large number of false 
paths and multi-cycle paths, 
/Too many tagged timings=>Slow Timing 

Analysis
� Tag Minimization
�Follow two-direction propagation [4].
�Expand to multi-cycle paths.
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� Basic idea of tag minimization
� Tags can be merged when timing information can be 

shared.

R(p-
1) = {1} R(p-
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Rule Collection Minimization
Flow

Backward 
Sweeping R(p+)

Minimize rule collections 
at vertex v

Propagate rule collections 

Repeat for all 
vertices in a Forward 

Sweeping.

Minimization at vertex v

Construct non-false paths attached 
with setup times and hold times

Cover distinct non-false path
times with rule collections

Devise timing shifting to align
setup times and hold times
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Intersections and Bipartite Graph
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Time Shifting and Biclique Covering [5][6]

� = � {R(p-
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Propagate Rule Collections

� Propagate every rule set R(p-) � �(u) from vertex 
u to v
� Each R(p-)' = (R(p-) �I(u, v)) �F(v).
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{�+1,{3}}{�+1, {3}}{{2}+1,{3}}�2 ={{2}+1, 
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Correctness
If multi-cycle path rules satisfy: 
� sub graph Gr are from primary inputs to 

primary outputs of graph G
Timing analysis with rule collections as 

timing tags
� Computes slacks of non-false paths, and the 

multi-cycle path slacks are computed using 
multi-cycle required times.
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Complexity
� n: the number of vertices in graph
� k: total number of edges in false paths and 

multi-cycle paths
� t(v): the number of tags at vertex v is O(k)
� Run time of minimization at v is O(k3)
� Total run time is O(nk3) 
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Experiments on Artificial Cases

� 100u100 cell mesh. 
� Each cell with 2 inputs, 

and 2 outputs.
� Randomly produced rule. 
� Each Gr with 2-4 PIs, 2-4 

POs, and 6000 edges.
� (hr, sr) = (1, 2) or (-f, +f)
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Experimental Results
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Experiments on 4 Industry Cases
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Run Time Analysis
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Conclusions
� We propose a framework to unify the false paths 

and multi-cycle path constraints . 
� We use two-direction propagation approach to 

produce minimized number of tags for false path 
and multi-cycle paths. .

� The experimental results on 4 industry test cases 
show that STA run time is reduced by 38.13% in 
average.  The runtime of the minimization is only 
61 seconds for the largest case.
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