
A Unified Framework
Processing False Paths and

Multi-cycle Paths in Static
Timing Analysis

Shuo Zhou, Bo Yao, Hongyu Chen,
Yi Zhu, Chung-Kuan Cheng (UC San Diego),

Mike Hutton (Altera Corp.)

27-2

Outline
� Background and Problem Statement
� Static Timing Analysis (STA)
� False Paths and Multi-cycle Paths
� Previous Works on False Paths

� Our Contributions
� Unified Framework: Rules and Rule Sets
� Rule Collection Minimization: Extension of our

Previous Work [4]

� Experimental Results
� Conclusions

27-3

Overview of STA [1]

� Formulate combinational circuits between
latches into graphs, G = {V, E}

re
gi

st
er

s

Combinational
circuit (no loop)

re
gi

st
er

s

Combinational
circuit (no loop)

re
gi

st
er

s

Common
Clock

Clock

27-4

21A C

Overview of STA (cont)
� Dynamic programming
� One forward sweeping: longest/shortest paths

� a(v)min=min(a(u)min+d(u,v)), a(v)max=max(a(u)max + d(u,v))
� General delay bounds, hd delay(path) ds

� One backward sweeping
� Required arrival times and Slacks

0/0

0/0
B D G

F

E

3 8

3 3

3

1/1

3/3

1/9

3/6

6/11a(u)min/ a(u)max

u
d(u,v) v

a(v)min/a(v)max
1

27-5

False Paths
�A path not logically realizable.

s=0, mux.out = mux.input0
s=1, mux.out =mux.input1

A

B

D

E

Mux

0

 1

Mux

0

 1

C

False path

s s

Inv
A

N
D

A
N

D

F

G

H

27-6

Multi-cycle Paths
� A path signals propagate longer than one

cycle.
re

gi
st

er
s

Combinational
circuit (no loop)

re
gi

st
er

s

Combinational
circuit (no loop)

re
gi

st
er

s

Common
Clock

Combinational
circuit (no loop)

2-cycle path

27-7

Statement of Problem
Given a set of false paths and multi-

cycle paths
� remove false path timing, and compute

multi-cycle path slacks with multi-cycle
required time in linear time.

27-8

Previous Works on False Paths

� Labeling [2]: remove false path arrival times with
tags.

3A

B E

DC

2 3

30 5

3false_path

60

2

False path 6false_path

27-9

Previous Works (cont)
� Node splitting [3] :
� Create a new node for each tagged timing
� Remove false paths by edge removal.
�Minimize #nodes be split.

� Two-direction propagation minimizes #tags [4].

3A

B E

DC0

2

3
30 5

3false_path

60
2

False path

C1 3
3

27-10

Contributions
� Unified Framework
�Represent false paths and multi-cycle paths as

Exceptional Rules.
�Follow labeling approach[2] to deal with false

paths and multi-cycle paths.
� Tag Minimization
�Follow two-direction propagation[4] to minimize

#tags.
�Minimize #tags = Minimize #distinct arrival times

=> improve analysis efficiency.

27-11

Exceptional Rules
� Rule r

� Gr = {Vr, Er}, sub graph
� Delay bounds (hr, sr), hrd delay(path) dsr.
� Rule priority p

� Rule sets through an edge, I(u, v)
� Rule sets from and to vertex v, F(v)/T(v)

A

B

C

D H
E

G I

K
F J

False path rule 0
(-f,+f) p = 2

C
H

E

G I

K
F

2-cycle path

B D H

G I

K

F

through

end

start

2-cycle path
rule 1 (1, 2) p = 1

27-12

Use Rule Sets as Timing Tags[2]

� Prefix path p- at vertex v from PI to v
� Prefix Rule Set R(p-) contains rule r iff p- belongs to

false paths or multi-cycle paths specified by r.

rule 0 (-f,+f) p = 2

rule 1 (1, 2) p = 1
A

B

C

D H

E

G I

K

F J

R({(A,C),(C,E),(E,F)})
= {0,1}

R({(A,C),(C,E),(E,F),(F,J)}) = �

C

H

E

G I

K

F

A

B

C

D

E

G I

F

L

27-13

F

HC

B E G

A I

D

rule 1 (-f,+f) p = 2
F

B E

A

D

rule 2 (-f,+f) p = 2

E GD

rule 3 (1, 2) p = 1 F

H

B E G

I

D

{1}

{1,3}

�
{1,2}
{1,3,2},
{2}

{1,2},
{1,3,2},
{2} �,

{3}

Rule sets

�

{1},
{1,3},
�

{2},
{2,3},
{2}

F

HC

B E G

A I

D

Compute Rule Sets in Forward
Sweeping:
1) Primary inputs => R(p-) = F(v)
2) R(p-)' = (R(p-) �I(u,v)) �F(v)
3) R(p-)'�T(v) z � =>

rule r � R(p-)'�T(v) with
highest priority dominates

False paths,
{2,3} � T(G) = {2,3},
rule 2 dominates

{1}

({1} �{1}) �{2}

2-cycle path,
{3} � T(H) = {3}

27-14

Tag Minimization

� When there are a large number of false
paths and multi-cycle paths,
/Too many tagged timings=>Slow Timing

Analysis
� Tag Minimization
�Follow two-direction propagation [4].
�Expand to multi-cycle paths.

27-15

� Basic idea of tag minimization
� Tags can be merged when timing information can be

shared.

R(p-
1) = {1} R(p-

2) = {2}

C
B E GD
A F

H

R(p-
0) = �

�0 = {R(p-
1), R(p-

0)}

�1 = {R(p-
2), R(p-

0)}

rule 1 (-f,+f)

ED
A F

rule 2 (-f,+f)

C
ED

H
C
B E GD
A F

H

C
B E GD
A F

H

27-16

Rule Collection Minimization
Flow

Backward
Sweeping R(p+)

Minimize rule collections
at vertex v

Propagate rule collections

Repeat for all
vertices in a Forward

Sweeping.

Minimization at vertex v

Construct non-false paths attached
with setup times and hold times

Cover distinct non-false path
times with rule collections

Devise timing shifting to align
setup times and hold times

27-17

Intersections and Bipartite Graph

Rule 1 (-f, +f) p = 2

H
ED

A

F

C
ED

Rule 2 (-f, +f) p = 2

��{2}R(p-
3) = {2}

{3}{3}{3}R(p-
2) = {3}

{1}��R(p-
1)= {1}

R(p+
6)={1,3}R(p+

5)= {3}R(p+
4)={2,3}R(p+)R(p-)

Intersect R(p-) and R(p+) at vertex D

Bipartite graph at D

C
B E GD
A F

H

r �R(p-) � R(p+) <=> a path
governed by r

p1

p2

p3

p4

p5

p6

B E GD
F

H

Rule 3 (1, 2) p = 1

R(p-
1)={1}

R(p-
2)={3}

R(p-
3)={2}

R(p+
4)={2,3}

R(p+
5)={3}

R(p+
6)={1,3}

A

B

C

F

G

H

E(0,1)

(0,1)

(1,2)

(1,2)

(0,1)

(1,2)

(0,1)

27-18

Time Shifting and Biclique Covering [5][6]

� = � {R(p-
i)+'cycle}, R(p-

i)�biclique

{1}

{3}

{2}

{2,3}

{3}

{1,3}

A

B

C

F

G

H

E

biclique 1 :
�1 = {R(p-

1)+1 , R(p-
2)} = {{1}+1 ,{3}}

(0,1)
(0,1)
(1,2)

(1,2)
(1,2)

(0,1)
(0,1)

biclique 2 :
�2 = {R(p-

3)+1 , R(p-
2)} = {{2}+1 ,{3}}

A

B

F

Path A->D->E->F

Captured

Launching

Shift

clock

Path
B->D->E->F

Align setup and hold
times of two paths.

27-19

Propagate Rule Collections

� Propagate every rule set R(p-) � �(u) from vertex
u to v
� Each R(p-)' = (R(p-) �I(u, v)) �F(v).

�1={{1}+1,
{3}}

�2 = {{2}+1,
{3}}

{{1}+1,
{3}}

{{2}+1,
{3}}

E
D

27-20

{�+1,{3}}{�+1, {3}}{{2}+1,{3}}�2 ={{2}+1,
{3}}

{{1}+1,{3}}{�+1, {3}}{�+1,{3}}�1 ={{1}+1,
{3}}

R(p+
6)={1,3}R(p+

5)= {3}R(p+
4)={2,3}

Intersections at vertex E
R(p+)

�

Minimization at Vertex E

Setup and hold times Conflict
=> Path Timing is not shared
=> Produce no edge

Bipartite
graph at E

{{1}+1,
{3}}

{{2}+1,
{3}}

{2,3}

{3}

{1,3}

(1,2)A

B

C

F

G

H

(1,2)

(1,2)
(1,2)

D

C
B E GD
A F

H

p1

p2

p3

p4

p5

p6

27-21

Correctness
If multi-cycle path rules satisfy:
� sub graph Gr are from primary inputs to

primary outputs of graph G
Timing analysis with rule collections as

timing tags
� Computes slacks of non-false paths, and the

multi-cycle path slacks are computed using
multi-cycle required times.

27-22

Complexity
� n: the number of vertices in graph
� k: total number of edges in false paths and

multi-cycle paths
� t(v): the number of tags at vertex v is O(k)
� Run time of minimization at v is O(k3)
� Total run time is O(nk3)

27-23

Experiments on Artificial Cases

� 100u100 cell mesh.
� Each cell with 2 inputs,

and 2 outputs.
� Randomly produced rule.
� Each Gr with 2-4 PIs, 2-4

POs, and 6000 edges.
� (hr, sr) = (1, 2) or (-f, +f)

)(#
#)(#% �

� ��

pRsetruleprefix
collectionrulepRsetruleprefiximp

27-24

Experimental Results

31.10% average
87
61
44
19
2

CPU(s)

145484
97124
89987
49321
8281

#Rule
collection �(p-)

30.63%
44.94%
34.59%
36.03%
9.29%

%imp

209718 104
176384
137581
77102
9129

Prefix Rule
set R(p-)

88
69
34
9

#rules

27-25

Experiments on 4 Industry Cases

Multi-
cycle

false

2262
2574
3181

27

2
7

2517
1

rules

533,224
325,582

38,535
27,555

nets

97124
89987
49321

8281

#Rule
Collection
�(p-)

44.94%
34.59%
36.03%

9.29%

%imp

176384
137581

77102
9129

Prefix
Rule Set

R(p-)

atml_
core

pm25c
cq_mod

tdl

Case

27-26

Run Time Analysis

38.13%average

61
44

19

2

Minimiza-
tion

CPU(s)
%reductionUse Rule

Collection �(p-)
Use Prefix

Rule Set R(p-)

19.5

28.5

2

1.2

51.65%

48.49%

52.38%

0

40.33

55.33

4.2

1.2

STA Run Time

atml_core
pm25c

cq_mod

tdl

Case

)(sin
sin)(sin% �

� ��

pRguruntimeSTA
guruntimeSTApRguruntimeSTAreduction

27-27

Conclusions
� We propose a framework to unify the false paths

and multi-cycle path constraints .
� We use two-direction propagation approach to

produce minimized number of tags for false path
and multi-cycle paths. .

� The experimental results on 4 industry test cases
show that STA run time is reduced by 38.13% in
average. The runtime of the minimization is only
61 seconds for the largest case.

References
[1] R. B. Hitchcock, "Timing Verification and Timing Analysis

Program", DAC 1982, pp. 594-604.
[2] K. P Belkhale, et. al., "Timing Analysis with known False

Sub-Graphs", ICCAD 1995, pp. 736-740.
[3] D. Blaauw, et. al., "Removing user-specified false paths

from timing graphs", DAC 2000, pp. 270-273.
[4] S. Zhou, B. Yao, H. Chen, Y. Zhu, C.K. Cheng, M. Hutton,

et al., "Improving the efficiency of Static Timing Analysis
with False Paths", IEEE/ACM Int. Conf. CAD 2005, pp.
527-531.

[5] J. Orlin, "Containment in graph theory: Covering graphs
with cliques", Nederl. Akad. Wetensch. Indag. Math.,
39:211-218, 1977.

[6] H. Muller, "Alternate Cycle-Free Matchings", Order,
(7):11-21, 1990.

Thank you!

