A Unified Framework
rocessing False Paths and

Multi-cycle Paths in Static
Timing Analysis

Shuo Zhou, Bo Y ao, Hongyu Chen,
Y1 Zhu, Chung-Kuan Cheng (UC San Diego),
Mike Hutton (Altera Corp.)

I
Outline

m Background and Problem Statement
Static Timing Analysis (STA)
False Paths and Multi-cycle Paths
Previous Works on False Paths

m Our Contributions
Unified Framework: Rules and Rule Sets

Rule Collection Minimization: Extension of our
Previous Work [4]

m Experimental Results
m Conclusions

27-2

Overview of STA 11

m Formulate combinational circuits between
latches into graphs, G ={V, E}

registers

Common *?

/

— C >
——» — Combinational —
E circuit (no loop) :
R =~

—| registers

e

— . —
_ Combinational —
i { circuit (no loop
: :

— | registers

Clock

J

Clock |

17
S

\

27-3

" J
Overview of STA (cont)

m Dynamic programming
One forward sweeping: longest/shortest paths
m A(V)mip=min(a(u)yn+d(u,v)), alv)ma=max(@(u)ma, + d(u,v))
s General delay bounds, h< delay(path) <s
One backward sweeping

= Required arrival times and Slacks 1/9
V) i &V) ®
1
d(u,v) @ 3/6 3
O, o (B—1+(O2-(E)
a(u)min/ a(u)max V1 3 3 6/11
0 0O—s——©
3/3

27-4

" A
False Paths

m A path not logically realizable.

False path @ @
° S

Mux
@ s=0, mux.out = mux.inputO

()
® ‘®
s=1, mux.out =mux.inputl

O

ANV GHV

27-5

" J
Multi-cycle Paths

m A path signhals propagate longer than one
cycle.

2-cycle path _(Combinational .

92 0 92
o > . . — | 5)) —
2 >~ Combinational —+| & |- Combinational A—s| 2
| circuit (no loop) HEIE circuit (no loop)] o
Q- — 2 — —| 2
Common * 1 1

Clock

27-6

" A
Statement of Problem

Given a set of false paths and multi-
cycle paths

m remove false path timing, and compute
multi-cycle path slacks with multi-cycle
required time in linear time.

27-7

" A
Previous Works on False Paths

m Labeling [2l: remove false path arrival times with

tagS.
False path Jfalse path §<seJoath

0 (A)-3 @3 @5
0@ Gk

27-8

" J
Previous Works (cont)

m Node splitting [3]:
Create a new node for each tagged timing
Remove false paths by edge removal.
Minimize #nodes be split.

False path 3false_path

0 (A)-3 @33><@5
0 ®2-C) 3-® 6
2

m Two-direction propagation minimizes #tags 4.

27-9

" A
Contributions

m Unifled Framework

Represent false paths and multi-cycle paths as
Exceptional Rules.

Follow labeling approach!?! to deal with false
paths and multi-cycle paths.

m Tag Minimization

Follow two-direction propagation!4! to minimize
#tags.

Minimize #tags = Minimize #distinct arrival times
=> Improve analysis efficiency.

27-10

"
Exceptional Rules

m Ruler
G, ={V,, E,}, sub graph
Delay bounds (h,, s,), h.< delay(path) <s..
Rule priority p

m Rule sets through an edge, I(u, v)

m Rule sets from and to vertex v, F(v)/T(v)

False path rule O
@ @ (-00,+0) p = 2 @ @

B®—C0—E®—B—Q ©O—E@—6 o ®
W through
2-cycle path 2-cycle path " © ®»

ruel(1,2)p=1 @ end

start -..___ >'/
27-11> @ @ ®

"
Use Rule Sets as Timing Tags!?!

m Prefix path p- at vertex v from Pl to v

m Prefix Rule Set R(p-) contains rule r iff p- belongs to
false paths or multi-cycle paths specified by r.

rule 0 (-c0,+0) p =2 ©x0),
RU{(A.C).(C.E).(E.F)) ©—®—®
-y L ©pe0) B—K®
B—O—®—®—0~1

ruel(1,2)p=1 ,60-0O
® /@ ® eePRT

R{(A.C).(C.ELEF).FI) =2 O

27-12

rule 1 (-o0,+0) p =2

®
® ®&—O o-0—g "Mesw2p=1 CEO,
B 0—-B—-G) ® 0060
rule 2 (-oo0,+o0) p = 2
© ® 0-6-G ®
False paths,
{2,3} " T(G) ={2,3},
Rule sets rule 2 dominates
Compute Rule Sets in Forward 352
Sweeping: ({1} {1} {2} -%-37
1) Primary inputs => R(p-) = F(v) {1} @® (1) ®&—-O0 @
2) R(p-)" = (R(p-) Nl(u,v)) UF(v) B
3) R(p-)NT(v) # & => 3@ 1©2 ¢ 129 G ’%3—
rule r e R(p-)'T(v) with s © Wia [y O
highest priority dominates {2} {2} %}

2-c§cle path,

713 (3} T(H) = {3)

" J
Tag Minimization

m When there are a large number of false
paths and multi-cycle paths,

®Too many tagged timings=>Slow Timing
Analysis

m Tag Minimization
Follow two-direction propagation 4.
Expand to multi-cycle paths.

27-14

m Basic idea of tag minimization
Tags can be merged when timing information can be

shared.
le 1 (-o0,+00 rule 2 (-oo,+00)
® ® a " ole
®,0-6~-6 0-® o ®
©R(\p_o):@ ® RE)={1 R = 12}
Ro = {R(p), R(P)}
@ ®
Oy ® =0 ® ©
@o 6 G . o
© (3) \

R, ={R(p), R(p7)}

27-15

" A
Rule Collection Minimization

Flow Minimization at vertex v
Backward
Sweeping R(p*) Construct non-false paths attached
T with setup times and hold times
Minimize rule collections l
at vertex v
Devise timing shifting to align
l setup times and hold times
Propagate rule collections l

Cover distinct non-false path

Repeat for all times with rule collections

vertices in a Forward
Sweeping.

27-16

Intersections and Bipartite Graph

) @B ® P
P ®—-0—B—~0C P
p; © B re
@

Rule 1 (-0, +o0) p = 2

O—®

B
Rule 2 (-0, +0) p=2 B
O—®
©
Rule3(1,2)p=1 ®
® Ee—~G
&)

r eR(p-) N R(p+) <=> a path
governed by r

Intersect R(p-) and R(p+) at vertex D

RPIRIP) R(p*,)={2,3} | R(p*s)= {3}| R(p*s)={1,3}
R(p-)={1} %) %)
R(p,) = {3} {3} {3} {3}
R(p7;) = {2} % Z
Bipartite graph at D
A R(po:{l}ﬁig%mm):{z,sﬁ F
g ROD=(=E2)> RE*=(3} *o
C H

27-17

R(P)=2l—gpp ROPT={1,3}

"
Time Shifting and Bicliqgue Covering Pli°l

Align setup and hold - _
times of two paths biclique 1
' R, = {R(D'Q” , R(p»)} = {1} {3}}
Launching
s = A
cIockJ B
A B
AN] 5
5 \Shﬁ-:t\\ Path A->D->E->F C
i\ i
B i Path
F - B->D->E->F biclique 2:

" Captured %, = R, R(P-)} = {21 {3}

R = {R(p7)ee}, R(p7) ebiclique
27-18

" J
Propagate Rule Collections

m Propagate every rule set R(p’) € R(u) from vertex

utov
Each R(p)' = (R(p) NI(u, V)) UF(V).
D
R={{1}*, ®
{34 {1y,
{3}}
R, = {2},

{3}}

27-19

Minimization at Vertex E

Intersections at vertex E

0 ® p ROV [Rp)=(231] R7)= 3} | RO7)=(13}
:@®—0—B0—0 P |- i - i
R, ={1}, [{238 {2 (31 |{1eL{sh
P © ® re |3p)
R, ={{2}", {wk {2+, {3} /{@ﬂ,{s}}
Bipartite 3 X ’
graph at E Setup and hold times Conflict
A {1y, =2~ {2,3} - => Path Timing is not shared
{3} => Produce no edge
B {3} G
C {2y, % {13} H

3}}

27-20

" A
Correctness

If multi-cycle path rules satisfy:
sub graph G, are from primary inputs to
primary outputs of graph G
Timing analysis with rule collections as
timing tags
Computes slacks of non-false paths, and the

multi-cycle path slacks are computed using
multi-cycle required times.

27-21

Complexity

m N: the number of vertices in graph

m k: total number of edges in false paths and
multi-cycle paths

m {(v): the number of tags at vertex v is O(k)
m Run time of minimization at v is O(k3)
m Total run time is O(nk3)

27-22

Experiments on Artificial Cases

m 100x100 cell mesh. | |

m Each cell with 2 inputs, R R R
and 2 outputs.

m Randomly produced rule. Y

m Each G, with 2-4 Pls, 2-4 ” ” g

POs, and 6000 edges. v
o (hr’ Sr) = (1’ 2) or ('OO’ +OO)

#prefix rule set R(p)-#rule collection R

%imp = _
#prefix rule set R(p)

27-23

Experimental Results

#rules | # Prefix Rule #Rule %imp | CPU(S)
set R(p) |collection R(p)

9 9129 8281 9.29% 2
34 77102 49321 36.03% 19
69 137581 89987 34.59% 44
88 176384 97124 44.94% 61
104 209718 145484 30.63% 87

average 31.10%

27-24

Experiments on 4 Industry Cases

#rules # ITrefix #If:QuIe %Iimp
Case . | Rule Set | Collection
eS| false | MUt | TReY | si(p)
tdl 27,555 1 27 9129 8281 9.29%
cq_mod 38,535| 2517 3181 77102 49321 | 36.03%
pm25c | 325,582 7 2574 137581 89987 | 34.59%
atml_ 533,224 2 2262 176384 97124 | 44.94%
core

27-25

Run Time Analysis

Min_imiza- STA Run Time
Case tion Use Prefix Use Rule %reduction
CPU(s) | Rule Set R(p") | Collection R(p-)
tdl 2 1.2 1.2 0
cq_mod 19 4.2 2 52.38%
pm25c 44 55.33 28.5 48.49%
atml_core 61 40.33 19.5 51.65%
average 38.13%

%reduction =

STA runtime using R(p)—-STA runtime using R

STA runtime

27-26

using R(p7)

" A
Conclusions

m \We propose a framework to unify the false paths
and multi-cycle path constraints .

m \We use two-direction propagation approach to
produce minimized number of tags for false path
and multi-cycle paths. .

m The experimental results on 4 industry test cases
show that STA run time Is reduced by 38.13% In
average. The runtime of the minimization is only
61 seconds for the largest case.

27-27

" A
References

1] R. B. Hitchcock, "Timing Verification and Timing Analysis
Program”, DAC 1982, pp. 594-604.

2] K. P Belkhale, et. al., "Timing Analysis with known False
Sub-Graphs", ICCAD 1995, pp. 736-740.

[3] D. Blaauw, et. al., "Removing user-specified false paths
from timing graphs", DAC 2000, pp. 270-273.

[4] S. Zhou, B. Yao, H. Chen, Y. Zhu, C.K. Cheng, M. Hutton,
et al., "Improving the efficiency of Static Timing Analysis
with False Paths", IEEE/ACM Int. Conf. CAD 2005, pp.
527-531.

[5] J. Orlin, "Containment in graph theory: Covering graphs
with cliques", Nederl. Akad. Wetensch. Indag. Math.,
39:211-218, 1977.

[6] H. Muller, "Alternate Cycle-Free Matchings", Order,
(7):11-21, 1990.

Thank you!

