Crosstalk Analysis using Reconvergence Correlation

Sachin Shrivastava, Harindranath Parameswaran, Rajendra Pratap and Manuj Verma
Cadence Design Systems, India

cädence

Outline

- Problem Statement
- Relative Timing Windows
- Crosstalk Analysis using Relative Timing Windows
- Probabilistic Analysis
- Results and Conclusions

Problem Statement

- Timing window at N1 and N2 overlap
- Hence considered do be switching together
- But, if N switches at time t ,
- N 1 and N 2 can only witch at $[t+1, t+2]$ and $[t+3, t+5]$ respectively.
- N1 and N2 can never switch together
- Pessimism in current methodology
- Current methodology ignores the correlation (Reconvergence) between N1 and N2

Timing Windows (Classical)

- Timing windows at Ni $\mathrm{TW}(\mathrm{Ni})=\left(\mathrm{t}_{\text {min }}^{\mathrm{i}}, \mathrm{t}_{\text {max }}^{\mathrm{i}}\right)$
- Delay from Ni to N $\mathrm{D}(\mathrm{Ni} \rightarrow \mathrm{N})=\left(\mathrm{d}_{\text {min }}{ }^{\mathrm{i}}, \mathrm{d}_{\text {max }}{ }^{2}\right)$
- Timing Windows at N

$$
\mathrm{TW}(\mathrm{~N})=\bigcup_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{t}_{\min }^{\mathrm{i}}+\mathrm{d}_{\min }^{\mathrm{i}}, \mathrm{t}_{\max }^{\mathrm{i}}+\mathrm{d}_{\max }^{\mathrm{i}}\right)
$$

- Due to addition, relative information is lost,
- We need a way to preserve this relative information

Relative Timing Windows

- In relative timing windows based approach, delays and timing windows of previous net are preserved
- TW at N relative to Ni

$$
\mathrm{TW}(\mathrm{~N} / \mathrm{Ni})=\{\mathrm{TW}(\mathrm{Ni}), \mathrm{D}(\mathrm{Ni} \rightarrow \mathrm{~N})\}
$$

- Given TW (C/B) and TW (B/C),

$$
\begin{aligned}
& \operatorname{TW}(C / B)=\{\operatorname{TW}(B), D(B \rightarrow C)\} \\
& \operatorname{TW}(B / A)=\{T W(A), D(A \rightarrow B)\}
\end{aligned}
$$

- TW(C/A) Can be calculated as,

$$
\operatorname{TW}(C / A)=\{T W(A), D(A \rightarrow B) \oplus D(B \rightarrow C)\}
$$

Crosstalk Analysis

- To find if A1 and A2 can switch together,
- Find latest common divergence points in fan-in cone of A1,A2. Let these points are set Φ.
- Find relative TW of A1,A2 relative to all points in Φ

$$
\begin{aligned}
& \mathrm{TW}(\mathrm{Al})=\bigcup_{\mathrm{i} \in \phi}\{\mathrm{TW}(\mathrm{i}), \mathrm{D}(\mathrm{i} \rightarrow \mathrm{Al})\} \\
& \mathrm{TW}(\mathrm{~A} 2)=\bigcup_{\mathrm{i} \in \phi}\{\mathrm{TW}(\mathrm{i}), \mathrm{D}(\mathrm{i} \rightarrow \mathrm{~A} 2)\}
\end{aligned}
$$

Common part (TW(i)) can be ignored, hence nets A1 and A2 can switch together if $\mathrm{D}(\mathrm{i} \rightarrow \mathrm{A} 1)$ and $\mathrm{D}(\mathrm{i} \rightarrow \mathrm{A} 2)$ overlap

Crosstalk Analysis (Example)

- To find if N1 and N2 can switch together,
- Find latest divergence point (N in this case)
- Find relative TW of $\mathrm{N} 1, \mathrm{~N} 2$ relative to N

TW(N1/N)=\{TW(N),(1,2) \}
TW $(\mathrm{N} 2 / \mathrm{N})=\{\mathrm{TW}(\mathrm{N}),(3,5)\}$

- Common part (TW(N)) can be ignored hence nets N1 and N2 don't switch together

Probabilistic Analysis

- Let victim has N aggressors
- All switching events are uniformly distributed in time period T.
- If width of timing window of i_{th} aggressor is τ_{i}.
- Probability that all nets can switch together

$$
\mathrm{P}_{\text {old }}=\left(\prod_{\mathrm{i}=1}^{\mathrm{N}} \frac{\tau_{\mathrm{i}}}{\mathrm{~T}}\right)\left(\sum_{\mathrm{j}=1}^{\mathrm{N}} \frac{\mathrm{~T}}{\tau_{\mathrm{j}}}\right)
$$

Conventional Approach

- Let width of TW at divergence point is d, Prob. will be

$$
\mathrm{P}_{\mathrm{new}}=\left(\prod_{\mathrm{i}=1}^{\mathrm{N}} \frac{\tau_{\mathrm{i}}-\mathrm{d}}{\mathrm{~T}}\right)\left(\sum_{\mathrm{j}=1}^{\mathrm{N}} \frac{\mathrm{~T}}{\tau_{\mathrm{j}}-\mathrm{d}}\right)
$$

Results (Crosstalk Glitch)

Part 1 : Nets below threshold (using conventional and proposed approach) = 139634

Part 2 : Violation pruned with proposed approach $=2053$

Part 3 : New violations due to proposed approach $=0$

Part 4 : Nets above threshold (using existing and proposed approach $)=14906$
on a 65 nm design

Results (Crosstalk Delay)

on a 65 nm design

Conclusions

- Current approach does not consider correlation between nets
- Can lead to pessimistic analysis
- We proposed use of relative timing windows to address this pessimism
- We analytically found the effectiveness of the approach using probabilistic methods
- Our approach pruned many false violation on a real design

Thank You

Q\&A

