A Low Dynamic Power and Low Leakage Power 90-nm CMOS Square-Root Circuit

Tadayoshi Enomoto and Nobuaki Kobayashi Chuo University, Tokyo, Japan ASP-DAC'2006, Session D-1 Yokohama, Japan. Jan. 25, 2006

Power Reduction Techniques

1. Dynamic Power of the CMOS circuit

$$P_{\rm AT} = f_{\rm c} V_{\rm D}^2 \sum_{g=1}^G C_{\rm Lg} = f_{\rm c} V_{\rm D}^2 G(\text{ave.} C_{\rm Lg}) = k_{\rm AT} G V_{\rm D}^2$$

To reduce P_{AT} , V_D^2 and G should be decreased, while f_c must be kept constant

2. Leakage Power of the CMOS circuit

$$P_{\text{ST}} = V_{\text{D}} \sum_{g=1}^{G} I_{\text{L}g} = V_{\text{D}} G(\text{ave.} I_{\text{L}g}) \approx k_{\text{ST}} G V_{\text{D}}$$

To decrease P_{ST} , G and V_D should be reduced

3. Clock Frequency & Supply Voltage

$$f_{c} = \frac{\left(V_{D} - V_{t}\right)^{2}}{V_{D} \sum_{g=1}^{G_{c}} \frac{C_{Lg}}{\beta_{g}}} \approx \frac{V_{D} - 2V_{t}}{\sum_{g=1}^{G_{c}} \frac{C_{Lg}}{\beta_{g}}}$$
$$V_{D} - 2V_{t} \approx f_{c} \sum_{g=1}^{G_{c}} \frac{C_{Lg}}{\beta_{g}} = f_{c}G_{c}(\text{ave.}\frac{C_{Lg}}{\beta_{g}}) = k_{VD}G_{c}$$

To reduce $V_{\rm D}$, $G_{\rm c}$ should be decreased

 f_{c} = Clock frequency V_{D} = Supply voltage C_{Lg} = Load capacitance of the *g*th logic gate I_{Lg} = Leackage current of the *g*th logic gate G = Number of total logic gates G_{c} = Number of critical path logic gates

8-bit Square-Root (SR) Circuit

Conventional SR Circuit (C-SR) New SR Circuit (N-SR) a_2 a a_2 $q_1 \prec$ q_1 as q_2 -FA q_2 1 q_3 FA q_3 r_5 r_2 r3 az q_3 $\downarrow q_1$ **↓** *q*₂ г **↓ ¥**q₃ q₃ ↓ q_1 $\downarrow \downarrow q_2$ * * q_i

	C-SR	N-SR	N-SR/C-SR
No. of logic gates, G	<i>G</i> = 189	<i>G'</i> = 89	47.1%
No. of CP logic gates, G _c	$G_{\rm c}=62$	$G_{\rm c}' = 30$	48.4%
Supply voltage, V _D	$V_{\rm D} \approx k_{\rm VD} G_{\rm c} + 2V_{\rm t}$	$V_{\rm D}$ ' $\approx k_{\rm VD}G_{\rm c}$ '+ $2V_{\rm t}$	-
Active power, P _{AT}	P _{AT}	$P_{\rm AT}' = (G'/G)(V_{\rm D}'/V_{\rm D})^2 P_{\rm AT}$	$(G'/G)(V_{\rm D}'/V_{\rm D})^2$
Stand-by power, P _{ST}	P _{ST}	$P_{\rm ST}$ ' $\approx (G'/G)(V_{\rm D}'/V_{\rm D}) P_{\rm ST}$	$(G'/G)(V_{\rm D}'/V_{\rm D})$

Max. Clock Freq. (*f*_c), Dynamic power (*P*_{AT}) & Leakage Power (*P*_{ST}) of 8-bit, 90-nm Square-Root Circuits

	C-SR	N-SR	N-SR/C-SR (%)	Note
No. of logic gates, G	189	89	47.1	
No. of CP logic gates, G _c	62	30	48.4	
Supply voltage, V _D [V]	1.00	0.77	77	
Active power, <i>P</i> _{AT} [µW]	484.0	131.9	27.1	$at f_c = 570 MHz$
Stand-by power, <i>P</i> _{ST} [nW]	1,147	275.6	24.0	

New Square-Root Circuit with SVL Circuits (N-SR-S) SVL; Self-controllable-Voltage-Level

90-nm CMOS LSI Chips with 8-bit SR Circuits & Experimental Results

Technology: 90-nm, 6-Layer Cu, CMOS Chip Size: 2.5 mm \times 2.5 mm $V_{tn} = 0.222$ V, $V_{tp} = -0.241$ V

	C-SR	N-SR	N-SR-S
No. of logic gates, G	189	89	91
(Ratio [%])	(100)	(47.1)	(48.2)
Active area sizes, A [µm ²]	972	505	558
(Ratio [%])	(100)	(51.9)	(57.4)

