A High-Throughput Low-Power Fully Parallel 1024-bit ¹/₂-Rate Low Density Parity Check Code Decoder in 3-Dimensional Integrated Circuits

C.-J. Richard Shi

Department of Electrical Engineering University of Washington, Seattle, WA 1/24/2006

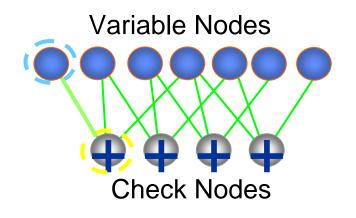
Presented by Sheldon X. D. Tan

Department of Electrical Engineering University of California, Riverside, CA

High-Throughput Fully-Parallel LDPC Decoder and Applications

•Low-density parity-check (LDPC) codes are emerging as error correcting standards for many military and commercial applications, due to their near Shannon-limit performance.

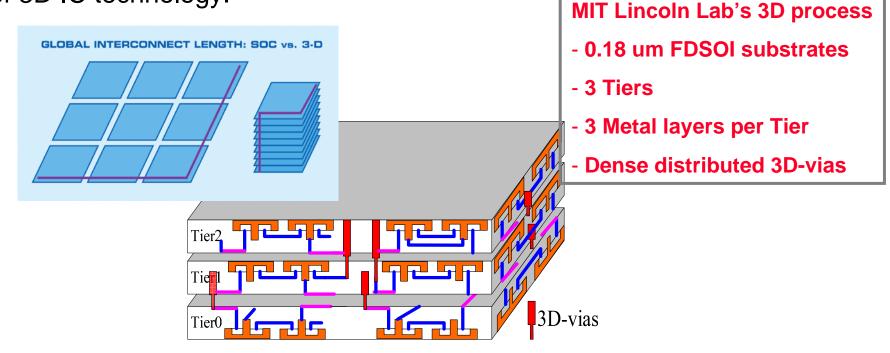
- -Military Joint Tactical Radio Systems (JTRS)
- -NASA Space Communications Project
- -NASA OMNI Project



- -Direct instantiation of Tanner-graph representation of LDPC code
- -Two types of computation nodes, named variable nodes and check nodes
- -Ideal for high-throughput and low-power applications

$$H \cdot c = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_2 \\ c_4 \\ c_5 \\ c_6 \end{bmatrix} = 0$$

3D Integration Technology

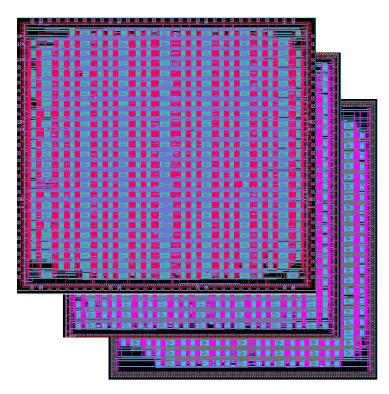


•However, fully-parallel implementation has serious interconnect design challenges utilizing standard 2D technology.

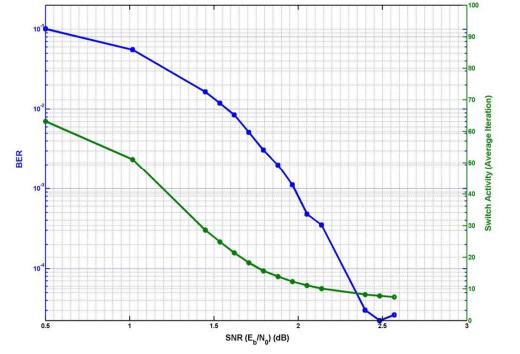
Reference:

A. Blanksby, and C. J. Howland, "A 690-mW 1-Gb/s 1024-b, rate ½ low-density parity-check code decoder," IEEE Journal of Solid State Circuits, vol. 37, no. 3, pp. 404-412, Mar 2002.

•To address these interconnect design challenges, we explore the use of 3D IC technology.



Cross-section of 3-tier 3D integration



The 3D 3-Tier LDPC Design

Top-View of 3-tier Final Layout

The simulated code performance

•The main data path is designed as 16 parallel three-stage pipelines.

•This allows the decoder to achieve a high throughput of 2Gb/s with a clock frequency of 128MHz. (128 MHz x 16 = 2 Gb/s) -The blue curve shows the BER vs. SNR performance up to a BER of 10⁻⁵.

-The green curve shows fast iteration convergence with increasing SNR.

Summary

	23076		10070)	13070	Z3070	4J 70
	250%	270%	160%		130%	230%	43%
improvement							
3D design	(6.4*6.227)*3= 119.5	67.4	8.68	4.1	24636	1	430
2D design	18.238*15.92= 290.3	182.4	13.82	4	32900	2.33	750
2D vs. 3D	area(mm*mm)	total wire length (m)	max. wire leng before buffer insertion (mm)	max. wire leng after buffer insertion (mm)	buffer used	clock skew(ns)	power dissipation (mw)

→Overall significant improvements based on real silicon comparison (8M transistor LDPC ASIC; MIT-LL 3D 3tier/2D processes)

Contribution

•The first large-scale 3D ASIC implementation (2M gates).

•The first demonstration, by real silicon tape out and simulation, of a 3D IC process shown to yield an order of magnitude improvement over the corresponding 2D process, in terms of power-delay-area product (1.75 * 2.5 * 2.5 = 11).

•Proves the viability of our automated 3D design flow through the implementation of a large-scale silicon ASIC design.