
Energy Savings through 
Embedded Processing on 
Disk System

S. W. Son, G. Chen, M. Kandemir, F. Li*
Dept of Computer Science & Engineering

The Pennsylvania State University

ASPDAC’06



2

Outline
Motivation
Smart Disk Architecture
Related Work
Our Approach
Experimental Setup and Results
Conclusion



3

Motivation
Many data-intensive applications are tightly 
coupled with disk subsystem

Computations that depend on disk data are 
filtering type

Smart disks: embedding computing power in 
the storage devices

Performing computing in the storage device 
instead of transforming large data sets to the host
Addressing the huge I/O demands for the next 
generation applications



4

What is Filtering Type?
Using the SD system, edge detection for each image is 
performed directly at the drives and only the edges are 
returned to the HOST. 
A request for the raw image at the left returns only the 
data on the right, which is much more compact.

Source: IBM Almaden's CattleCam 

256KB Images Edges found



5

Smart Disk Architecture

CPUCPU

MemoryMemory

HighHigh--speed speed 
linklink

SmartSmart
DiskDisk
(SD)(SD)

Embedded Embedded 
processorprocessor

diskdisk
RAMRAM

switch, linkswitch, link

NICNIC

NICNIC

HostHost



6

Related Work
Embedded processing on the disk/memory 
subsystem

Active/smart disk : [Acharya et al], [Riedel et al], [Uysal et 
al], [Chiu et al] and [Memik et al]
ISTORAGE : UC Berkeley
IRAM and PIM: UC Berkeley and Univ. of Notre Dame

Compiler-based code partitioning for enhancing 
performance [G. Chen et al]

→ This paper focuses on the code partitioning for 
energy savings through embedded processing



7

Our Approach

L1: …

L2: …

…

Code
Partitioner

(ILP Solver)

L1: …

…

L2: …

…

Host-resident code

disklets

Original code



8

Our Approach
Compiler divides a given code fragment into 
two parts:

Host-resident codes
Disklets

We use ILP formulation to determine the 
optimal execution strategy for the given 
program

Goal is to minimize the total energy consumed by 
the program



9

ILP Formulation
Variables determined by the compiler

Ji,j : Ji,j = 1, if arrays Ai and Aj share some elements
Ni : number of iterations for loop nest Li
Xi, Ei : time/energy per iteration for executing Li on the 
HOST 
Xi’, Ei’ : time/energy per iteration for executing Li on the 
SD
Wi,j : 1 if Lj updates the array elements of Ai
Ri,j : 1 if Lj reads the array elements of Ai

Variables determined by ILP solver
Hi : 1 if Li is assigned to HOST, otherwise 0
Mi,j : 1 if Ai is in the HOST memory initially
Di,j : 1 if Ai is dirty at the entry of Lj



10

ILP Formulation – cont’d

*

1
j

n

j
jlink EHE

n

j
jjjjleakage THTHPE

1
)')1((

n

j
jjjjjjdynamic ENHENHE

1

)')1((

dynamicleakagelink EEEE



11

Example

(b) Array layouts

L1: for i = 0 to 999

for j = 0 to 499

A1[i][j] = g (A3[i],j);

L2: for i = 0 to 999

for j = 0 to 499

A3[i] = A3[i] + A2[i][j];

L3: for i = 0 to 999

A3[i] = h (A3[i]);

(a) Original code



12

Example – cont’d

i Ni Xi Xi’
1
2
3

500,000
500,000

1000

100
10

200

800
80

1600

* These variables are determined statically by the compiler



13

Example – results of the ILP solver



14

Example – cont’d
L1: for i = 0 to 999

for j = 0 to 499

A1[i][j] = g (A3[i],j);

write A1 back to disk;

signal SD to start L2;

wait for signal;

load A3 into memory;

L3: for i = 0 to 999

A3[i] = h (A3[i]);

wait for signal;

L2: for i = 0 to 999

for j = 0 to 499

A3[i] = A3[i] + A2[i][j];

signal end of L2;



15

Default Simulation Parameters
HOST Processor: Intel P4 2.0GHz
Embedded Processor: StrongARM 200MHz
Memory: 32MB for SD and 1GB for HOST
Disk: IBM Ultrastar 36Z15 (15K RPM)
Interconnects: Infiniband 1x
Switch Fabrics: IBM Infiniband 1x switch

See the paper for details of performance & 
power values



16

Benchmarks

28.3%22.3%2.6457.510.3bmcm

54%23.6%16.22707.180.7mgrid

74%23.8%0.6101.62.9apsi

59%23.9%4.4736.622.1swim

% of 
code on 

SD

Link 
Energy

(%)

Execution 
Time 
(sec)

Base
Energy

(J)

Total
Data (MB)

Name

* Benchmarks are selected from SPEC2000 and Perfect club



17

Evaluated Schemes
HOST: all computations are performed on the host 
system
SD: all computations are performed on the smart 
disk system
OPT: computations are partitioned based on our 
approach
HOST+EOPT: HOST scheme with power control
SD+EOPT: SD scheme with power control
OPT+EOPT: OPT scheme with power control



18

EOPT Scheme
Each system component can be in a low-
power mode when it is not in use

e.g., CPU, memory, interconnect, etc
The decision to place a component in the 
low-power mode is based on breakeven time 
of each component



19

Normalized Total Energy Consumption

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

SD OPT

HOST
+EO

PT

SD
+EO

PT

OPT
+EO

PT

N
or

m
al

iz
ed

 T
ot

al
 E

n
er

g
y

1.81 mgrid



20

Normalized Link Energy Consumption

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SD OPT

HOST
+EO

PT

SD
+EO

PT

OPT
+EO

PT

N
o
rm

a
liz

e
d
 L

in
k 

E
n
e
rg

y 1.84 mgrid

Most of the energy consumed by communication links 

can be eliminated if we exploit low power mode



21

Conclusion
We propose ILP-based approach that partitions an 
application code between the host system and the 
disk system (equipped with an embedded 
processor and associated memory)
We experimentally evaluated our approach using a 
set of array-intensive benchmarks that frequently 
exercise the disk-resident datasets
Our experimental results indicate that the 
proposed partitioning approach reduces power 
consumption significantly



22

Thank You!

sson@cse.psu.edu


