Energy Savings through
Embedded Processing on
Disk System

Dept of Computer Science & Engineering
The Pennsylvania State University

ASPDAC'06

Outline

= Motivation

= Smart Disk Architecture

= Related Work

= Our Approach

= Experimental Setup and Results
= Conclusion

Motivation

= Many data-intensive applications are tightly
coupled with disk subsystem

= Computations that depend on disk data are
filtering type
= Smart disks: embedding computing power in
the storage devices

= Performing computing in the storage device
Instead of transforming large data sets to the host

= Addressing the huge I/O demands for the next
generation applications

What Is Filtering Type?

= Using the SD system, edge detection for each image is
performed directly at the drives and only the edges are
returned to the HOST.

= A request for the raw image at the left returns only the
data on the right, which is much more compact.

R 7

5]

256KBImages. Edges found

Source: IBM Almaden's CattleCam

Smart Disk Architecture

Host
switch, link
CPU " 3 Smart
NIC & I'.Siee Disk
N

Memory JRECONN
Embedded
processor

—_—
ISk
Al

NIC

Related Work

= Embedded processing on the disk/memory
subsystem

= Active/smart disk : [Acharya et al], [Riedel et al], [Uysal et
al], [Chiu et al] and [Memik et al]

= ISTORAGE : UC Berkeley
= IRAM and PIM: UC Berkeley and Univ. of Notre Dame

= Compiler-based code partitioning for enhancing
performance [G. Chen et al]

— This paper focuses on the code partitioning for
energy savings through embedded processing

Our Approach

Host-resident code
L,:...

Original code

Code
Partitioner

disklets
L, ...

Our Approach

= Compiler divides a given code fragment into
two parts:
= Host-resident codes
= Disklets

= We use ILP formulation to determine the
optimal execution strategy for the given
program

= Goal is to minimize the total energy consumed by
the program

ILP Formulation

= Variables determined by the compiler
= J;; 1 J;;=1, if arrays A; and A, share some elements
= N, : number of iterations for loop nest L,

= X, E; : time/energy per iteration for executing L; on the
HOST

= Xi', E; : time/energy per iteration for executing L; on the
SD

= W;; i 1if L updates the array elements of A
= Rj;: 11if L reads the array elements of A,

= Variables determined by ILP solver
= H;: 1if L, is assigned to HOST, otherwise 0
= M;; 1 1if Ajis in the HOST memory initially
= D;;: 1if Ajis dirty at the entry of L,

ILP Formulation — cont’d

Ereaage = P (H T, +(1-H)T,")
j=1

|eakage

E gynamic :Z_;(HJNJ.EJ. +(@-H)NE")

J

EIlnk = Z H] Ej
j=1
E = EIink + Eleakage + Edynamic

10

Example

L,: fori=0to 999
for j =0 to 499
ATl = g (Alil.i);
L,: for i =0 to 999
for j =0 to 499
Ali] = Aqli] + AJil[;
L,: for i =0 to 999

Asll] = h (A5l]);

——

__

__

__

(a) Original code

(b) Array layouts

11

Example — cont'd

i j J
J.. T ., L.
L 1 2 3 I/Vz,J 1 2 3 Rz,] 1 2 3
111(1]0 111/01]0 111/0]0
j12]1]1]0 il210(0]0 il210(1]0
Y3100/ 1 v3lol1l1 Y3111111
| N X | X’

i | |
1 500,000 | 100 | 800
2 500,000| 10 | 80

3 1000 |200 |1600

* These variables are determined statically by the compiler
12

Example — results of the ILP solver

J J
¢ | H,]”i,leB Dl}ilT)?,
111 1/ofo]o 1/ololo
210 il2/0[0]0 il2/0[(0]0
3|1 v3[0[1]1 v3[0l0]o0

13

Example — cont'd

L,: fori=0to 999
for j =0 to 499
A[ITDT = g (Asli].));
write Al back to disk;
signal SD to start L,;
wait for signal,
load A; iInto memory;

L,: for i =0 to 999
Agll] = h (Agli]);

wait for signal,
L,: fori =0 to 999
for j =0 to 499
Agll] = Ag[i] + AolII0T
signal end of L,;

14

Default Simulation Parameters

= HOST Processor: Intel P4 2.0GHz

= Embedded Processor: StrongARM 200MHz
= Memory: 32MB for SD and 1GB for HOST

= Disk: IBM Ultrastar 36Z15 (15K RPM)

= Interconnects: Infinitband 1x

s Switch Fabrics: IBM Infiniband 1x switch

= See the paper for details of performance &
power values

15

Benchmarks

swim 22.1 736.6 4.4 23.9% 59%

apsi 2.9 101.6 0.6 23.8% 4%

mgrid 80.7 2707.1 16.2 23.6% 54%

bmcm 10.3 457.5 2.6 22.3% | 28.3%

* Benchmarks are selected from SPEC2000 and Perfect club

16

Evaluated Schemes

HOST: all computations are performed on the host
system

SD: all computations are performed on the smart
disk system

OPT: computations are partitioned based on our
approach

HOST+EOPT: HOST scheme with power control
SD+EOPT: SD scheme with power control
OPT+EOPT: OPT scheme with power control

17

EOPT Scheme

= Each system component can be in a low-
power mode when it is not in use

= e.g., CPU, memory, interconnect, etc

= The decision to place a component in the
low-power mode is based on breakeven time
of each component

18

Normalized Total Energy Consumption
mgrid

1,
?O.Q
o 0.8
c
'-'_J 0.7
8 0.6
o
= 0.5
°
.0,2,9 0.4
TEUO.S
5 0.2
Z 0.1

0]

19

Normalized Link Energy Consumption

> 1 1.84 mgrid

X

GC') 0.9 N

5 0.8 -

v 0.7 -

.5 0.6 -

0.5 -

® 0.4

'c:u 0.3 -

= 0.2 -

s 0.1

Z 0 | —
Q A 3N L A
) Q Q Q Q

@) ((/O <</O <</O

X X X
RO)
Most of the energy cofisumed by communication links

can be eliminated if we exploit low power mode

20

Conclusion

= We propose ILP-based approach that partitions an
application code between the host system and the
disk system (equipped with an embedded
processor and associated memory)

= We experimentally evaluated our approach using a
set of array-intensive benchmarks that frequently
exercise the disk-resident datasets

= Our experimental results indicate that the

proposed partitioning approach reduces power
consumption significantly

21

Thank You!

sson@cse.psu.edu

22

