
Energy-Aware Computation 
Duplication for Improving 

Reliability in Embedded Chip 
Multiprocessors

G. Chen, M. Kandemir, and F. Li
Department of Computer Science and 

Engineering
Pennsylvania State University



2

Introduction

• Advantages of chip multiprocessors (CMP)
– Easy for verification
– Appropriate for high-level code parallelism
– Power efficient

• Transient errors
– Cross-coupling, ground bounce, external terrestrial 

radiations…
– Technology scaling and power-saving techniques 

increases embedded systems’ vulnerability to 
transient errors

• Our goal: Utilizing on-chip parallelism for best 
tradeoffs between performance, power, and 
reliability



3

Chip Multiprocessor Architecture

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

L2

Off-chip memory



4

Loop Parallelization

Loop iteration space

P1 P2 P3 PnP4 P5 Pn-1

I1 I2 I4I3 I5 In-1 In

Each processor gets a portion of iterations 
to execute



5

Adaptive Loop Parallelization
• Add more processors can degrade performance of a loop

4 Proc

8 Proc

Thread 
creation Active Sync

• Assign the optimum number of processors to each loop

for i=1..1024
for j=1..1024

…
P1 P2 P3 P4



6

Processor Number for Optimum Performance

4271tsf
444n-real-updates
622full-search

32eflux
8316712btrix

54adi
5113step-log

N7N6N5N4N3N2N1Benchmark



7

Adaptive Loop Parallelization

Loop iteration space

P1 P2 Pm Pm+1 Pm+2 Pm+3 Pn

I1 I2 Im

How to utilize idle processors?



8

Optimizing Power Consumption

Loop iteration space

P1 P2 Pm Pm+1 Pm+2 Pm+3 Pn

I1 I2 Im

Idle processors are put into low-power mode 
to save leakage energy



9

Improving Reliability

Loop iteration space

P1 P2 Pm Pm+1 Pm+2 Pm+3 Pn

I1 I2 Im



10

Improving Reliability

Loop iteration space

P1 P2 Pm Pm+1 Pm+r Pm+r+1 Pn

I1 I2 Im I1’ Ir’

The local iteration space of r processors (P1
through Pr) are duplicated and executed on 
processors Pm+1 through Pm+r



11

Improving Reliability

Loop iteration space

P1 P2 Pm Pm+1 Pm+r Pm+r+1 Pn

I1 I2 Im I1’ Ir’

r/m is called the duplication percentage. 
Different duplication percentages represent 
different tradeoff points between performance, 
energy, and reliability 



12

Computation Duplication

Primary execution Duplicate execution

P1 P2
An important decision to make is how to 
compare the two executions
An important decision to make is how to 
compare the two executions



13

Lock-step Approach

Ti
m

e

sync

write

other
Primary 

execution
Duplicate 
execution

sync & 
compare
sync & 
compare
sync & 
compare
sync & 
compare

A lock-step approach can generate a lot of 
communication activities and it also requires 
many comparison instructions. Therefore, it is 
not desirable for embedded CMP.

A lock-step approach can generate a lot of 
communication activities and it also requires 
many comparison instructions. Therefore, it is 
not desirable for embedded CMP.



14

Checksum-based Execution Comparison

Ti
m

e

write

other
Primary 

execution
Duplicate 
execution

checksums



15

Checksum-based Execution Comparison

Ti
m

e

write

other
Primary 

execution
Duplicate 
execution

sync & compare



16

Example Code

A[i]=C[i+1]*D[i]+E[i];
B[i]=C[i-1]-D[i-1];

Original loop body

A[i]=C[i+1]*D[i]+E[i];
CHECK[prid]+=A[i];
B[i]=C[i-1]-D[i-1];
CHECK[prid]+=B[i];

CHECK[prid]+= 
C[i+1]*D[i]+E[i];

CHECK[prid]+= 
C[i-1]-D[i-1];

Primary execution Duplicated execution

Checksum for each processor



17

Shared Data Problem

Ti
m

e

Primary 
execution

Duplicate 
execution

Desired execution order

1

2 2

3 3



18

Shared Data Problem

Ti
m

e

Primary 
execution

Duplicate 
execution

Race condition might happen if an array element 
is both read and written in the iteration space

2

3 1

4 4

Undesirable execution sequence



19

Solution to Shared Data Problem

Ti
m

e

Primary 
execution

Duplicate 
execution



20

Example Code

A[i]=B[i]+C[i];
B[i]=C[i]-10;

Original loop body

A[i]=B[i]+C[i];
CHECK[prid]+=A[i];
B[i]=C[i]-10; 
CHECK[prid]+=B[i];

CHECK[prid]+= 
B’[i]+C[i];

CHECK[prid]+= 
C[i]-10;

Primary execution Duplicated execution



21

Experimental Setup

• Simics for CMP simulator
• 8 processors
• 8KB L1 I-cache, 8KB L1 D-cache, 1MB L2 

cache
• Seven benchmarks from Perfect Club, 

Livermore, DSPStone



22

Energy-Delay-Fallibility (EDF) Product

• EDF = energy * (execution cycles) / 
Fallibility
– Fallibility = 1/reliability
– Reliability is the percentage of primary 

processors that have duplicates
• EDF is a good metric for evaluating the 

tradeoffs between energy, performance, 
and reliability
– We want EDF to be as small as possible



23

Performance Overhead

• Less than 2% overhead when averaged 
over all the benchmark codes

• Performance overhead breakdown

0%

20%

40%

60%

80%

100%

3step-
log

adi btrix eflux full-
search

n-real-
updates

tsf

Array Duplication Checksum Comparison Reactivation



24

EDF with Different Percentage Usage of Idle 
Processor

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

btrix eflux full-search n-real-updates

As percentage of duplicates increases, EDF 
increases since reliability increases.
As percentage of duplicates increases, EDF 
increases since reliability increases.

As we use more processors for duplication, the 
benefits coming from increased reliability can 
be offset by increased energy consumption. 

As we use more processors for duplication, the 
benefits coming from increased reliability can 
be offset by increased energy consumption. 



25

Conclusion

• On-chip parallelism of CMP can be used 
for improving reliability

• Single metric based compilation strategies 
are not sufficient for current embedded 
systems, where multiple constraints are 
important

• EDF can be used for evaluate the 
tradeoffs of power, performance, and 
reliability


