Object Duplication for
Improving Reliability

G. Chen, G. Chen, M. Kandemir, N.
Vijaykrishnan, M. J. Irwin

Department of Computer Science
and Engineering

The Pennsylvania State University

Soft Errors

Current
N A particle
strike

Soft errors or transient errors are circuit errors caused
due to excess charge carriers induced primarily by
external radiations

Soft Errors

* Why soft errors become problematic?

— As CMOS device sizes decrease, the charge stored
at each node decreases

— Potentially leads to a much higher rate of soft errors

— Low-power operating modes accentuates the soft
error problem

Challenges for Soft Error Protection

« Balance several factors
— Cost
« Extra hardware required
— Flexibility
 Different requirements of multiple applications

— Qverhead
« Performance, power, memory space

— Reliability

Java Virtual Machine (JVM)

« Java is widely used in
embedded devices

 JVM has detalils about
application’s status and
semantics

— error detection and recovery
may be easier

 Heap Is the dominant space
consumer in JVM

— We focus on heap objects

A

B

Free
Space

Free
Space

Checksum-based Schemes

TR

A |:Checksum = <_ FizRl
B B

C
C

Free
Space

Free
Space

A checksum for each field or each object
Updated at write operations

Checking is required for each read operation
Error detection, but no error correction

Motivation for Object Duplication

100%
90%-
80%-
70%-
60%-
50%-
40%-
30%-
20%-
10%-+

0%-

AN AN AN AN

Occupancy

Average Heap

Remaining heap can be used for other purposes,
or example, storing object duplicates

Object Duplication

Duplicate Area

Primary Area

D1

D2

(=T

Free

Space
Lt

P3

P2

P1

* Duplicate Is
updated on
each write

* Duplicate Is
read when
there Is an
error in the
primary

Full Duplication

* Performance overhead
— Extra accesses on writes
— Read accesses when error happens
— Cache conflicts
— Performance overhead is very low

 Memory space requirement doubled

* Two ways to reduce memory space
overhead

— Compression
— Selective duplication

Compression Based Duplication

Baly 9reoldng

ealy Alewlid

Compression Based Duplication

 All objects have compressed duplicates

* Performance overhead
— Compression on writes
— Decompression when primary copy corrupted
— Little overhead if the object is rarely updated

« Zero-removal compression/decompression
— Fast
— Java objects contains a lot of zero bytes

Life Cycle of an Object

Lifetime of object o

Allocation

Last access

O Write
¢ Read
A
Drag Dead
________ O @ = 5 5 5Q=@P 5 5 1 5 8 8 Qun@O=P-@P
<—>
Unused Time
< First access Last
reference

removed Garbage

collected

Full Duplication

Create duplicate Remove duplicate
’ Time range that duplicate exists)l
v
A
Drag Dead

Time

First access

B S Last reference

Lifetime of object o removed Garhage
Allocation Last access collected

Selective Duplication

« Early termination based duplication
* Lazy duplication
 Allocation site based

Early Termination Based

Create duplicate Remove duplicate
Time range that duplicate exists)l

<
\ 4
A
Drag Dead

Time

First access

B S Last reference

Lifetime of object o removed Garhage
Allocation Last access collected

Lazy Duplication

Create duplicate
l(Time range that duplicate exists)l

<

Remove duplicate

First access

Allocation

Lifetime of object o

>

Drag Dead

Time

Last reference
removed Garbage

Last access collected

Allocation Site Based

« Based on profiling

« Sort allocation sites according to the
access frequency of the object accessed

— Create duplicate at allocation sites leading to
higher access frequency

— No duplicate creation at allocation sites
leading to lower access frequency

Discussion of Selective Schemes

* Reliability i1s lower than full duplication

* Object life time
— Early termination based scheme favors short-
living objects
— Lazy duplication and allocation site based
schemes favor long-living objects

 Static vs dynamic

— Early termination based and lazy duplication
schemes are dynamic

— Allocation site based scheme iIs static

Experiment Setup

Java Application

KVM

Shade MP Execution Cycles

Simulator Memory Allocations

* Three types of statistics
— Heap space
— Error resilience
— Performance

Benchmarks

Benchmark Description

auction Ticket auction

calc Calculator

firstaid Firstaid information

jpeg Jpeg viewer

Image Photo album

manyballs |Bounding balls

mvideo Video player

pushpuzzle |Puzzle game

Allocated Heap Space

OJCHK B DUPL B COMPDUPL

D‘UPL increéses the size of the al]ocated
heap space by a factor of 2.77. COMPDUPL

reduces it to 2.37.

Heap Occupancy for Selective

Schemes

350%

300%

Heap Occupancy

N DN
o O
S 2
>

150%

100%

LAST-USE-100

LAST-USE-OPT QEE \‘ 1
— a |

-

PRFL
DELAYED
0110 0 | es
s s - andad LU

LAST-USE-80

DUPL

]

COMPDUPL

Non-correctable Error Rates

1 DUPL B COMPDUPL

30%
25%
20%
15%
10%

5%

0%

Recovered

Percentage of Errors not

COMPDUPL are 8.2% and 4.3%, respectively.

Non-correctable Error Rates

(1 No Duplicate B Faulty Duplicate
98.3% 88.4% 89.1%

ot recovere!

mmn |

\\5)

E 0% ﬂ-\gw e HD
NS \6 Q,Q

Average non-correctable error rate of LAST-
USE-OPT, LAST-USE-100, LAST-USE-80, PRFL,

and DELAYED are 8.2%, 8.2%, 50.2%, 19.1% and
41.6%, respectively.

Execution Cycles

JCHK B DUPL B COMPDUPL

Average execution cycles increase of DUPL and
COMPDUPL are 11.3% and 34.9%, respectively.

Conclusion

* Object duplication improves data integrity
and has good error coverage

« Compression reduces heap occupancy but
Increases execution cycles significantly

« Selective schemes help tradeoff heap
space consumption, error recover rate,
and performance

Thank you!

