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Soft errors or transient errors are circuit errors caused 
due to excess charge carriers induced primarily by 
external radiations



Soft Errors

• Why soft errors become problematic?
– As CMOS device sizes decrease, the charge stored 

at each node decreases 
– Potentially leads to a much higher rate of soft errors
– Low-power operating modes accentuates the soft 

error problem



Challenges for Soft Error Protection

• Balance several factors
– Cost

• Extra hardware required
– Flexibility

• Different requirements of multiple applications
– Overhead

• Performance, power, memory space
– Reliability



Java Virtual Machine (JVM)

• Java is widely used in 
embedded devices

• JVM has details about 
application’s status and 
semantics
– error detection and recovery 

may be easier
• Heap is the dominant space 

consumer in JVM
– We focus on heap objects
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• A checksum for each field or each object
• Updated at write operations
• Checking is required for each read operation
• Error detection, but no error correction



Motivation for Object Duplication
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Remaining heap can be used for other purposes, 
or example, storing object duplicates
Remaining heap can be used for other purposes, 
or example, storing object duplicates



Object Duplication
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Full Duplication

• Performance overhead
– Extra accesses on writes
– Read accesses when error happens
– Cache conflicts
– Performance overhead is very low

• Memory space requirement doubled
• Two ways to reduce memory space 

overhead
– Compression
– Selective duplication



Compression Based Duplication
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Compression Based Duplication

• All objects have compressed duplicates
• Performance overhead

– Compression on writes
– Decompression when primary copy corrupted
– Little overhead if the object is rarely updated

• Zero-removal compression/decompression
– Fast
– Java objects contains a lot of zero bytes



Life Cycle of an Object
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Full Duplication
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Selective Duplication

• Early termination based duplication
• Lazy duplication
• Allocation site based



Early Termination Based
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Lazy Duplication
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Allocation Site Based

• Based on profiling
• Sort allocation sites according to the 

access frequency of the object accessed
– Create duplicate at allocation sites leading to 

higher access frequency
– No duplicate creation at allocation sites 

leading to lower access frequency



Discussion of Selective Schemes

• Reliability is lower than full duplication
• Object life time

– Early termination based scheme favors short-
living objects

– Lazy duplication and allocation site based 
schemes favor long-living objects

• Static vs dynamic
– Early termination based and lazy duplication 

schemes are dynamic
– Allocation site based scheme is static



Experiment Setup
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• Three types of statistics
– Heap space
– Error resilience
– Performance



Benchmarks
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Allocated Heap Space
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CHK DUPL COMPDUPL

DUPL increases the size of the allocated 
heap space by a factor of 2.77. COMPDUPL 
reduces it to 2.37.

DUPL increases the size of the allocated 
heap space by a factor of 2.77. COMPDUPL 
reduces it to 2.37.



Heap Occupancy for Selective 
Schemes
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Selective schemes performs well in terms of 
heap space consumption. The ideal LAST-USE-
OPT performs very well. PRFL and DELAYED are 
better than COMPDUPL.

Selective schemes performs well in terms of 
heap space consumption. The ideal LAST-USE-
OPT performs very well. PRFL and DELAYED are 
better than COMPDUPL.



Non-correctable Error Rates
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Average non-correctable error rate of DUPL and 
COMPDUPL are 8.2% and 4.3%, respectively.
Average non-correctable error rate of DUPL and 
COMPDUPL are 8.2% and 4.3%, respectively.



Non-correctable Error Rates
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From left to right: LAST-USE-OPT, LAST-USE-100, LAST-
USE-80, PRFL, DELAYED.

Average non-correctable error rate of LAST-
USE-OPT, LAST-USE-100, LAST-USE-80, PRFL, 
and DELAYED are 8.2%, 8.2%, 50.2%, 19.1% and 
41.6%, respectively.

Average non-correctable error rate of LAST-
USE-OPT, LAST-USE-100, LAST-USE-80, PRFL, 
and DELAYED are 8.2%, 8.2%, 50.2%, 19.1% and 
41.6%, respectively.



Execution Cycles
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Average execution cycles increase of DUPL and 
COMPDUPL are 11.3% and 34.9%, respectively.
Average execution cycles increase of DUPL and 
COMPDUPL are 11.3% and 34.9%, respectively.



Conclusion

• Object duplication improves data integrity 
and has good error coverage

• Compression reduces heap occupancy but 
increases execution cycles significantly

• Selective schemes help tradeoff heap 
space consumption, error recover rate, 
and performance



Thank you!


