
Object Duplication for
Improving Reliability

G. Chen, G. Chen, M. Kandemir, N.
Vijaykrishnan, M. J. Irwin

Department of Computer Science
and Engineering

The Pennsylvania State University

B

S D

p substrate

G

n+n+

n channel

Soft Errors

+ - + -+ -

+ -
+-

+ -
+ -

+ -+ -

A particle
strike

Current

Soft errors or transient errors are circuit errors caused
due to excess charge carriers induced primarily by
external radiations

Soft Errors

• Why soft errors become problematic?
– As CMOS device sizes decrease, the charge stored

at each node decreases
– Potentially leads to a much higher rate of soft errors
– Low-power operating modes accentuates the soft

error problem

Challenges for Soft Error Protection

• Balance several factors
– Cost

• Extra hardware required
– Flexibility

• Different requirements of multiple applications
– Overhead

• Performance, power, memory space
– Reliability

Java Virtual Machine (JVM)

• Java is widely used in
embedded devices

• JVM has details about
application’s status and
semantics
– error detection and recovery

may be easier
• Heap is the dominant space

consumer in JVM
– We focus on heap objects

C

B

A

Free
Space

Free
Space

C

B

A

Free
Space

Checksum

Checksum-based Schemes

C
B
A

Free
Space

Read

Error?

• A checksum for each field or each object
• Updated at write operations
• Checking is required for each read operation
• Error detection, but no error correction

Motivation for Object Duplication

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
A

ve
ra

ge
 H

ea
p

O
cc

up
an

cy

au
cti

on
ca

lc

fir
sta

id
im

ag
e

jpe
g

man
yb

all
s

mvid
eo

pus
hp

uzz
le

AVERAGE

Remaining heap can be used for other purposes,
or example, storing object duplicates
Remaining heap can be used for other purposes,
or example, storing object duplicates

Object Duplication
D1

D2

D3

P1

P2

P3

Free
Space

P
ri

m
ar

y
A

re
a

D
up

lic
at

e
A

re
a

• Duplicate is
updated on
each write

• Duplicate is
read when
there is an
error in the
primary

Full Duplication

• Performance overhead
– Extra accesses on writes
– Read accesses when error happens
– Cache conflicts
– Performance overhead is very low

• Memory space requirement doubled
• Two ways to reduce memory space

overhead
– Compression
– Selective duplication

Compression Based Duplication
D1

D2

D3

P1

P2

P3

Free
Space

P
ri

m
ar

y
A

re
a

D
up

lic
at

e
A

re
a D1

D2

D3

P1

P2

P3

Free
Space

Compression Based Duplication

• All objects have compressed duplicates
• Performance overhead

– Compression on writes
– Decompression when primary copy corrupted
– Little overhead if the object is rarely updated

• Zero-removal compression/decompression
– Fast
– Java objects contains a lot of zero bytes

Life Cycle of an Object

Time

Allocation

First access

Last access

Last
reference
removed Garbage

collected

Drag

Lifetime of object o

Dead

Unused

Read
Write

Full Duplication

Time

Allocation

First access

Last access

Last reference
removed Garbage

collected

Drag

Lifetime of object o

Dead

Create duplicate Remove duplicate
Time range that duplicate exists

Selective Duplication

• Early termination based duplication
• Lazy duplication
• Allocation site based

Early Termination Based

Time

Allocation

First access

Last access

Last reference
removed Garbage

collected

Drag

Lifetime of object o

Dead

Create duplicate Remove duplicate
Time range that duplicate exists

Lazy Duplication

Time

Allocation

First access

Last access

Last reference
removed Garbage

collected

Drag

Lifetime of object o

Dead

Create duplicate Remove duplicate
Time range that duplicate exists

Allocation Site Based

• Based on profiling
• Sort allocation sites according to the

access frequency of the object accessed
– Create duplicate at allocation sites leading to

higher access frequency
– No duplicate creation at allocation sites

leading to lower access frequency

Discussion of Selective Schemes

• Reliability is lower than full duplication
• Object life time

– Early termination based scheme favors short-
living objects

– Lazy duplication and allocation site based
schemes favor long-living objects

• Static vs dynamic
– Early termination based and lazy duplication

schemes are dynamic
– Allocation site based scheme is static

Experiment Setup

Shade MP
Simulator

KVM

Java Application

Execution Cycles
Memory Allocations

• Three types of statistics
– Heap space
– Error resilience
– Performance

Benchmarks

Bounding ballsmanyballs

Puzzle gamepushpuzzle

Video playermvideo

Photo albumimage

Jpeg viewerjpeg

Firstaid informationfirstaid

Calculatorcalc

Ticket auctionauction

DescriptionBenchmark

Allocated Heap Space

0
0.5

1
1.5

2
2.5

3
3.5

au
cti

on ca
lc

fir
sta

id
im

ag
e

jpeg

man
yb

all
s

mvid
eo

push
puzz

le

CHK DUPL COMPDUPL

DUPL increases the size of the allocated
heap space by a factor of 2.77. COMPDUPL
reduces it to 2.37.

DUPL increases the size of the allocated
heap space by a factor of 2.77. COMPDUPL
reduces it to 2.37.

Heap Occupancy for Selective
Schemes

0%

50%

100%

150%

200%

250%

300%

350%

1 33 66 98 13
0

16
3

19
5

22
7

26
0

29
2

32
4

35
7

38
9

42
1

45
3

48
6

Time (K cycles)

H
ea

p
O

cc
up

an
cy

LAST-USE-100

COMPDUPL

LAST-USE-80

PRFL

LAST-USE-OPT

DELAYED

DUPL

Selective schemes performs well in terms of
heap space consumption. The ideal LAST-USE-
OPT performs very well. PRFL and DELAYED are
better than COMPDUPL.

Selective schemes performs well in terms of
heap space consumption. The ideal LAST-USE-
OPT performs very well. PRFL and DELAYED are
better than COMPDUPL.

Non-correctable Error Rates

0%
5%

10%
15%
20%
25%
30%

au
cti

on
ca

lc

fir
sta

id
im

ag
e

jpeg

man
yb

all
s

mvid
eo

push
puzz

le

Pe
rc

en
ta

ge
 o

f E
rr

or
s

no
t

R
ec

ov
er

ed
DUPL COMPDUPL

Average non-correctable error rate of DUPL and
COMPDUPL are 8.2% and 4.3%, respectively.
Average non-correctable error rate of DUPL and
COMPDUPL are 8.2% and 4.3%, respectively.

Non-correctable Error Rates

0%

20%

40%

60%

80%

au
cti

on ca
lc

firs
tai

d
im

ag
e

jpe
g

man
yb

all
s

mvid
eo

pu
sh

puz
zle

P
er

ce
nt

ag
e

of
 E

rro
rs

 n
ot

 re
co

ve
re

d
No Duplicate Faulty Duplicate

98.3% 88.4% 89.1%

From left to right: LAST-USE-OPT, LAST-USE-100, LAST-
USE-80, PRFL, DELAYED.

Average non-correctable error rate of LAST-
USE-OPT, LAST-USE-100, LAST-USE-80, PRFL,
and DELAYED are 8.2%, 8.2%, 50.2%, 19.1% and
41.6%, respectively.

Average non-correctable error rate of LAST-
USE-OPT, LAST-USE-100, LAST-USE-80, PRFL,
and DELAYED are 8.2%, 8.2%, 50.2%, 19.1% and
41.6%, respectively.

Execution Cycles

0

0.5

1

1.5

2

au
cti

on
ca

lc

fir
sta

id
im

ag
e

jpeg

man
yb

all
s

mvid
eo

push
puzz

le

CHK DUPL COMPDUPL

Average execution cycles increase of DUPL and
COMPDUPL are 11.3% and 34.9%, respectively.
Average execution cycles increase of DUPL and
COMPDUPL are 11.3% and 34.9%, respectively.

Conclusion

• Object duplication improves data integrity
and has good error coverage

• Compression reduces heap occupancy but
increases execution cycles significantly

• Selective schemes help tradeoff heap
space consumption, error recover rate,
and performance

Thank you!

