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Soft Errors
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Soft errors or transient errors are circuit errors caused
due to excess charge carriers induced primarily by
external radiations



Soft Errors

* Why soft errors become problematic?

— As CMOS device sizes decrease, the charge stored
at each node decreases

— Potentially leads to a much higher rate of soft errors

— Low-power operating modes accentuates the soft
error problem



Challenges for Soft Error Protection

« Balance several factors
— Cost
« Extra hardware required
— Flexibility
 Different requirements of multiple applications

— Qverhead
« Performance, power, memory space

— Reliability



Java Virtual Machine (JVM)

« Java is widely used in
embedded devices

 JVM has detalils about
application’s status and
semantics

— error detection and recovery
may be easier

 Heap Is the dominant space
consumer in JVM

— We focus on heap objects
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Checksum-based Schemes
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A checksum for each field or each object
Updated at write operations

Checking is required for each read operation
Error detection, but no error correction



Motivation for Object Duplication
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Remaining heap can be used for other purposes,
or example, storing object duplicates




Object Duplication
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Full Duplication

* Performance overhead
— Extra accesses on writes
— Read accesses when error happens
— Cache conflicts
— Performance overhead is very low

 Memory space requirement doubled

* Two ways to reduce memory space
overhead

— Compression
— Selective duplication



Compression Based Duplication
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Compression Based Duplication

 All objects have compressed duplicates

* Performance overhead
— Compression on writes
— Decompression when primary copy corrupted
— Little overhead if the object is rarely updated

« Zero-removal compression/decompression
— Fast
— Java objects contains a lot of zero bytes



Life Cycle of an Object
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Full Duplication
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Selective Duplication

« Early termination based duplication
* Lazy duplication
 Allocation site based



Early Termination Based
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Lazy Duplication
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Allocation Site Based

« Based on profiling

« Sort allocation sites according to the
access frequency of the object accessed

— Create duplicate at allocation sites leading to
higher access frequency

— No duplicate creation at allocation sites
leading to lower access frequency



Discussion of Selective Schemes

* Reliability i1s lower than full duplication

* Object life time
— Early termination based scheme favors short-
living objects
— Lazy duplication and allocation site based
schemes favor long-living objects

 Static vs dynamic

— Early termination based and lazy duplication
schemes are dynamic

— Allocation site based scheme iIs static



Experiment Setup

Java Application

KVM

Shade MP Execution Cycles

Simulator Memory Allocations

* Three types of statistics
— Heap space
— Error resilience
— Performance



Benchmarks

Benchmark Description

auction Ticket auction

calc Calculator

firstaid Firstaid information

jpeg Jpeg viewer

Image Photo album

manyballs |Bounding balls

mvideo Video player

pushpuzzle |Puzzle game




Allocated Heap Space
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D‘UPL increéses the size of the al]ocated
heap space by a factor of 2.77. COMPDUPL

reduces it to 2.37.



Heap Occupancy for Selective

Schemes
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Non-correctable Error Rates
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COMPDUPL are 8.2% and 4.3%, respectively.




Non-correctable Error Rates
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Average non-correctable error rate of LAST-
USE-OPT, LAST-USE-100, LAST-USE-80, PRFL,

and DELAYED are 8.2%, 8.2%, 50.2%, 19.1% and
41.6%, respectively.



Execution Cycles
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Average execution cycles increase of DUPL and
COMPDUPL are 11.3% and 34.9%, respectively.




Conclusion

* Object duplication improves data integrity
and has good error coverage

« Compression reduces heap occupancy but
Increases execution cycles significantly

« Selective schemes help tradeoff heap
space consumption, error recover rate,
and performance



Thank you!



