Timing-Driven Placement Based on Monotone Cell Ordering Constraints

Chanseok Hwang and Massoud Pedram

University of Southern California Department of Electrical Engineering Los Angeles CA, USA

Outline

Timing-Driven Placement -Problems & General Methods Our Approach -Motivations -Preferred Signal Directions -PSDP Algorithm Experimental Results Conclusion

Timing-Driven Placement (TDP)

Goal

To minimize the circuit delay while obtaining a legal placement solution

Challenges

Increasing dominance of Interconnect delay (50-70% of the longest path delay)
Increasing circuit size (>10M gates)

Solution Techniques for TDP

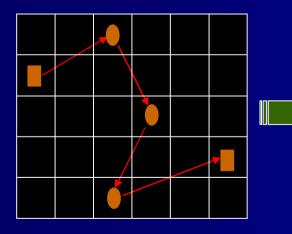
Path-based Methods

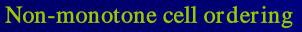
- Consider input-output paths during the problem formulation
 - Monitoring critical and near-critical paths
- Maintain accurate timing information during the optimization
- Suffer from high complexity and low scalability since the number of near-critical paths can become exponentially large

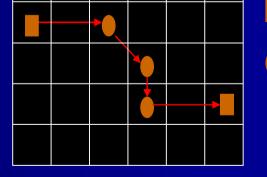
Solution Techniques (Cont'd)

Net-based Methods

- Run STA at intermediate steps of the placement process
- Assign weights (or net length bounds) to timingcritical nets according to their criticalities
- Convert the TDP problem to a weighted wire length minimization (or bounded wire length) problem
- Suffer from the difficulty of identifying the proper net weights and tend to exhibit poor convergence for net re-weighting (or result in over-constraining for net length bounding)


PSDP: Preferred Signal Direction Driven Placement


- Starting from an initial placement solution, relying on a move-based optimization strategy, we assign a preferred signal direction to each critical path in the circuit, which in turn encourages the timing-critical cells on that path to move in a direction that would maximize the monotonic behavior of the path in the 2-D placement solution.
- This is based on our observation that most of paths causing timing problems in a circuit meander outside the minimum bounding box of the start and end nodes of the path.


Monotone Cell Ordering

Cells on a target path do not zigzag or crisscross when the physical path from input to output is traced.

 Previously used for wire planning during synthesis and for net list partitioning.

Flip-flops

Combinational logic gates

Monotone cell ordering

Related Work on Signal Directions and Monotone Paths

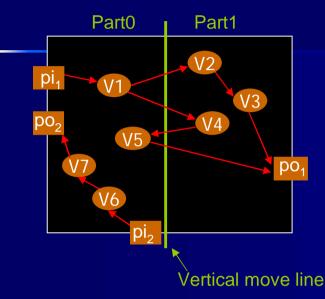
- S. Iman, M. Pedram, C. Fabian, and J. Cong, "Finding unidirectional cuts based on physical partitioning and logic restructuring", IWPD, 1993.
- W. Gosti, A. Narayan, R. K. Brayton and A. L. Sangivanni-Vincentelli, "Wire planning in Logic Synthesis", ICCAD, 1998.
- Cong and Lim, "Performance Driven Multi-way Partitioning", ASP-DAC, 2000.
- A. B. Kahng and X. Xu, "Local Unidirectional Bias for Smooth Cutsize-Delay Tradeoff in Performance-driven bipartitioning." ISPD, 2003.
- C. Hwang and M. Pedram, "PMP: Performance-driven multilevel partitioning by aggregating the preferred signal directions of I/O conduits", ASP-DAC, 2005.

Path Grouping and I/O Conduits

To make the direction assignment tractable, we implicitly group all circuit paths into a set of input-output conduits and assign a unique preferred direction to each such conduit.

Definition

 – I/O conduit σ: the set of all paths from some PI (or FF) to some PO (or FF)


 $N_{I/O \text{ conduits}} = (N_{PI} + N_{FF}) * (N_{PO} + N_{FF})$

Preferred Signal Directions of I/O Conduits

Definition

- Preferred signal direction of σ SD(σ): one of the following directions, LL, LR, RL and RR, depending on the locations of PI and PO of σ .
- All paths in σ satisfy the monotone cell ordering property (resulting in minimum wire delay), if the preferred signal direction is satisfied for all edges in the I/O conduit.

Signal Direction Constraints

 $\sigma_{1}: pi_{1} \rightarrow v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow po_{1}$ $e_{1}(pi_{1},v_{1}), e_{2}(v_{1},v_{2}), e_{3}(v_{2},v_{3}), e_{4}(v_{3},po_{1})$ $pi_{1} \rightarrow v_{1} \rightarrow v_{4} \rightarrow v_{5} \rightarrow po_{1}$ $e_{1}(pi_{1},v_{1}), e_{5}(v_{1},v_{2}), e_{6}(v_{2},v_{3}), e_{7}(v_{3},po_{1})$ $\sigma_{2}: pi_{2} \rightarrow v_{6} \rightarrow v_{7} \rightarrow po_{2}$

Signal direction constraints for the vertical move line:

 $\begin{array}{ll} \mathsf{P}(s(e_i)) \leq \mathsf{P}(t(e_i)), \ 1 \leq i \leq 7 \ \ \text{for} \ \ \sigma_1 & // \ \mathsf{SD}(\sigma_1) = \mathsf{LR} \\ \mathsf{P}(s(e_i)) = \mathsf{P}(t(e_i)) = 0, \ 8 \leq i \leq 10 \ \ \text{for} \ \ \sigma_2 & // \ \mathsf{SD}(\sigma_2) = \mathsf{LL} \end{array}$

s(e_i): Source node of e_i t(e_i): Target node of e_i P(v_i): Part number (0 or 1) of v_i

Signal Direction Constraint (Cont'd)

Signal direction constraint for a VERT (HORZ) move line

```
\begin{array}{lll} \text{SDC}^1: & \text{if } \text{SD}(\sigma) = \text{LL} (\text{BB}), \ \forall \ e_i \in \sigma, & \text{P}(s(e_i)) = \text{P}(t(e_i)) = 0 \\ \text{SDC}^2: & \text{if } \text{SD}(\sigma) = \text{RR} (\text{TT}), \ \forall \ e_i \in \sigma, & \text{P}(s(e_i)) = \text{P}(t(e_i)) = 1 \\ \text{SDC}^3: & \text{if } \text{SD}(\sigma) = \text{LR} (\text{BT}), \ \forall \ e_i \in \sigma, & \text{P}(s(e_i)) \leq \text{P}(t(e_i)) \\ \text{SDC}^4: & \text{if } \text{SD}(\sigma) = \text{RL} (\text{TB}), \ \forall \ e_i \in \sigma, & \text{P}(s(e_i)) \geq \text{P}(t(e_i)) \end{array}
```

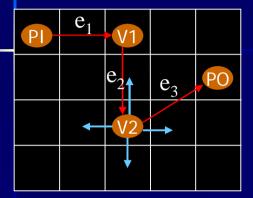
Difficulty

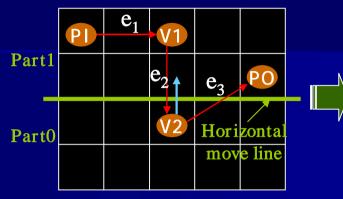
- No solution that satisfies SDCs of all I/O conduits exists.
- Increases the total wire length.

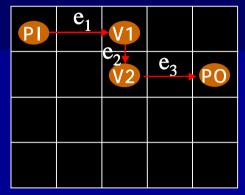
Solution

SDC's need to be relaxed.

SD Violation Count as the Timing Gain Function for a Cell Move


We treat delay as an optimization objective instead of a hard constraint to be satisfied, and use the violation count of SDC's.


 Timing gain function, TG(v_i), is defined to quantitatively evaluate the desirability of moving v_i from part_0 to part_1. It is calculated as:

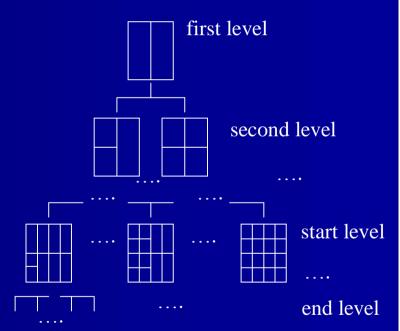

$TG(v_i) = VC(v_i | P(v_i)=0) - VC(v_i | P(v_i)=1)$

 $VC(v_i | P(v_i))$: violation counts of SDC when $P(v_i)$ is 0 or 1

Computation of the Timing Gain

Possible move-directions for v_2 Computing TG of v_2 for a move

 V_2 moves to the upper cell


Computing TG(v₂) for moving in the upper direction: $\sigma: pi \rightarrow v1 \rightarrow v2 \rightarrow po$, edges: e1(pi,v1), e2(v1,v2), e3(v2,po) SDC²: SD(σ)=TT, $\forall e_i \in \sigma$, P(s(e_i)) = P(t(e_i)) = 1 SDC²-count(e₂) = 1, SDC²-count(e₃) = 1 VC(V₂ | P(v₂)=0) = 2 // SDC violations before v₂-move \Rightarrow SDC² violated for e2 and e3. VC(V₂ | P(v₂)=1) = 0 // SDC violations after v₂-move \Rightarrow SDC² violations for e₂ and e₃ are eliminated. \therefore TG(v₂) = VC(V₂:P(v₂)=0) - VC(V₂:P(v₂)=1) = 2 For other directions: TG(v₂)_{1 EFT} = -2, TG(v₂)_{RIGHT} = 0, TG(v₂)_{BOTTOM} = -2

Aggregating the SD Violation Counts

- The timing gain of a node v_i w.r.t. a target move direction is obtained by summing the number of SDV's of each edge e_i connected to node v_i.
- This calculation is done by considering all I/O conduits (with given preferred signal directions) that go through the edge e_i.
- We thus aggregate preferred signal directions for all critical paths that pass through an edge, which in turn enables us to maximize the monotonic behavior of the critical paths.

Our TDP Algorithm (PSDP) : Preferred Signal Direction Driven Placement

- We integrate the proposed timing optimization process into a general recursive bipartitioning-based placement framework.
- We adopt hMetis as the bipartitioner.
- We perform timing optimization only once per hierarchical level after an initial global placement is generated.
- We legalize the obtained global placement solution when it reaches the "end" level.

PSDP Algorithm

PSD_Placement (G, T)

G : A directed graph representing a sequential circuit

T : Timing constraints

1. Calculate the start and end levels of timing-driven global placement;

2. Do initial wirelength-driven global placement from level one to start level;

3. While (start_level i end_level)

- While (j=0; j < number of sub_regions in level i; j++)
 - Generate a bipartitioning-based placement P_{i,j} of sub_region j;
- Do Timing_Optimization_PSD(P_i,T);
- 4. Do the legalization;

PSDP Algorithm (Cont')

Timing _Optimization_PSD (P,T)

- P: An initial hierarchical placement solution with J regions
- T: Timing constraints
- 1. Perform static timing analysis;
- 2. Find critical nodes, edges and I/O conduits;
- 3. Compute initial timing gains for all critical nodes;
- 4. Put all critical nodes into a timing gain heap;
- 5. While (heap != empty)
 - Extract root node v_i from the heap and move it in its preferred direction to a neighbor region in P;
 - If the region capacity is violated, select a non-critical node in the region and move it back to the parent region of v_i;
 - Update timing gains and restructure the heap as needed;
- 6. Find a sequence of moves that produces max_total_gain;
- 7. Undo moves that are not in the selected sequence;
- 8. If max_total_gain > 0 then goto step 3;
- 9. Else exit;

Experimental Setup

- 6 test cases; four (matrix, vp2, mac1 and mac2) are obtained from ISPD 2001 benchmarks while the other two (indust1 and indust2) are from a partner ASIC company.
- The delay models are based on TSMC 0.18um technology.
- PSDP is compared with Capo-boost and a leading industry placement tool (called QuadP) in terms of wire length and worst negative slack.
- We use Cadence WarpRoute and Pearl to report the experimental results.

Circuit Benchmark Data

Circuits	#Cells	#Nets	#IOs	
indust1	5931	5969	179	
indust2	20193	21699	351	
matrix	3,083	3,200	117	
vp2	8,714	8,789	321	
mac1	8,902	9,115	211	
mac2	25,616	26,017	415	

Experimental Results

Comparisons of TNS (total negative slack of all timing endpoints) between wirelength-driven and timing-driven modes of PSDP

Benchmark circuits	Clock cycle	Wirelength- driven mode	Timing-driven mode	% Improvement	
indust1	5.54	-38.2	-24.4	36.1%	
indust2	8.75	-204.5	-93.1	54.5%	
matrix	3.23	-5.8	-4.3	25.9%	
vp2	3.67	-68.3	-25.1	63.3%	
mac1	2.07	-21.4	-13.5	36.9%	
mac2	2.35	-125.4	-62.7	50.2%	
Average				44.5%	

Experimental Results (Cont'd)

 Comparisons in terms of HPWL (wirelength after placement), RWL (wirelength after routing) and WNS (worst negative slack after routing)

 PSDP runs 48% slower than QuadP in non-timing mode, but 58% faster than QuadP in timing-driven mode.

Circuits	QuadP (wirelength-driven mode)		QuadP (timing-driven mode)		Capo-boost		PSDP (timing-driven mode)					
	HPWL	RWL	WNS	HPWL	RWL	WNS	HPWL	RWL	WNS	HPWL	RWL	WNS
indust1	3.50	4.62	-1.23	3.59	4.65	-1.22	3.54	4.72	-1.85	3.58	4.80	-0.89
indust2	15.73	27.55	-4.31	15.67	28.10	-3.81	16.39	28.66	-3.52	16.07	29.07	-3.17
matrix	1.05	1.17	-2.20	1.08	1.20	-2.06	1.05	1.16	-2.04	1.12	1.23	-2.01
vp2	3.71	4.51	-3.02	3.77	4.53	-3.21	3.65	4.83	-3.21	3.81	4.89	-2.95
mac1	4.44	5.07	-0.56	4.45	5.09	-0.49	4.77	5.24	-0.41	4.81	5.25	-0.30
mac2	22.48	32.44	-14.46	22.49	32.97	-3.63	23.55	29.49	-1.01	24.08	31.23	-3.73
Ratio	1.00	1.00	1.00	1.01	1.01	0.83	1.03	1.01	0.85	1.05	1.04	0.69

Conclusions

We introduced a new timing-gain function model based on preferred signal directions for the timing-driven placement context.

The advantage of the new methodology has been confirmed by experimental results: on average 31% improvement on WNS. compared to a leading industry placer at the expense of wirelength increase, on average, by 5%.