
Simultaneous Block and I/O
Buffer Floorplanning for
Flip-Chip Design

Chih-Yang Peng, Wen-Chang Chao, and Yao-Wen Chang
Department of Electrical Engineering,
National Taiwan University, Taipei, Taiwan
Jyh-Herng Wang
Faraday Technology Corporation, Hsinchu, Taiwan

2

Outline

Conclusions

Introduction

Review of the
B*-tree Representation

Our Placement Method

Experimental Results

3

Introduction
Develop a hierarchical method for placing the
blocks and I/O buffers of flip-chip designs in
order to minimize the path delay and skew
simultaneously.
Integrate simulated annealing, partitioning, and
clustering based on the B*-tree representation.
Reduce the average cost by 48% in less
runtime compared with the flat B*-tree based
floorplanner.

4

Flip Chip Structure
The flip-chip package gives the highest chip density of
any packaging method to support the pad-limited ASIC
design.
The top metal layer of flip-chip, called Re-Distributed
Layer (RDL), connects I/O buffers to bump balls.
Bump balls are placed on RDL and use RDL to connect
to I/O buffers.

M7

(Top Metal)

PASV(L3)

M1

Bump

Other routing under bump

Top Metal

IO bufferCore cells

Redistributed Layer

M7

(Top Metal)

PASV(L3)

M1

Bump

Other routing under bump

Top Metal

IO bufferCore cells

Redistributed Layer

Cross section of the chip

(RDL)

5

Flip Chip Structure (cont’d)
The bump balls can overlap with I/O buffers and blocks
The I/O buffers can be placed anywhere inside a chip
unlike the traditional peripheral I/O buffers.
The signals or power could be imported from the signal
bumps or power bumps distributed on the whole chip.

Bump ball

block port

IO buffer

block

chip

Bump ball

block port

IO buffer

block

chip

Bump ball

block port

IO buffer

block

chip

Bump ball

Block

I/O buffer

path

6

Previous Work
Hsieh and Wang [ISCAS 2005]

Use an analytical method
Use sum of skew in the objective function

The individual skews may differ a lot.

7

Problem Formulation
Given bump ball positions, blocks, IO buffers, and netlist

All blocks and buffers are rectangular

Minimize the objective function: .

and are user-specified weighting factors.
and are the path delays of the jth input signal and the jth

output signal respectively.

21 βφαφ +=Γ

∑∑
==

+=
2

1

1

1
1

n

j

o
j

n

j

i
j ddφ

2

2121

2

11112 minmaxminmax ⎟
⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ −=

≤≤≤≤≤≤≤≤

o
jnj

o
jnj

i
jnj

i
jnj

ddddφ

where

α β
i
jd o

jd

(sum of path delays)

(sum of the squares of
input/output skews)

8

Outline

Conclusions

Introduction

Review of the
B*-tree Representation

Our Placement Method

Experimental Results

9

Review of the B*-Tree Floorplan
Representation

Chang et al., “B*-tree: A new representation for non-
slicing floorplans,” DAC-2k.

Compact modules to left and bottom.
Construct an ordered binary tree (B*-tree).

b0

b7

b8

b9
b1 b2

b3

b6
b5

b4

b0

b7

b8

b9
b1 b2

b3

b6b5

b4

n0

n7

n8

n9

n1

n2

n3

n4

n5

n6

A slicing/non-slicing floorplan Compact to left and down B*-tree

10

B*-Tree Packing
X-coordinates: Be determined by the tree structure.

Left child: the lowest, adjacent block on the right (xj = xi + wi).
Right child: the first block above, with the same x-coordinate
(xj = xi).

Y-coordinates: Can be computed in amortized O(1)
time by maintaining the contour structure.

n0

n7

n8

n9

n1

n2

n3

n4

n5

n6

(x0, y0)

b0

b7

b8

b9
b1 b2

b3

b6b5

b4
x1 = x0

w0
x7 = x0 + w0

b0

b7

b8

b9

Old contour

New contour
Newly
added
module

Horizontal contour

11

Outline

Conclusions

Introduction

Review of the
B*-tree Representation

Our Placement Method

Experimental Results

12

Our Algorithm

Global
Optimization

by simulated annealing
using the B*-tree

Partitioning
of the module and dissection

of the placement region

Declustering
If regions with < q
clustered modules

positioning constraints

module coordinates

Final
Floorplanning

Clustering

module
coordinates

regions
with < k
modules

Input :
Net list

Geometry
of the chip

Output :
legal

module
placement

13

Clustering

Global
Optimization

by simulated annealing
using the B*-tree

Partitioning
of the module and dissection

of the placement region

Declustering
If regions with < q
clustered modules

positioning constraints

module coordinates

Final
Floorplanning

Clustering

module
coordinates

regions
with < k
modules

Input :
Net list

Geometry
of the chip

Output :
legal

module
placement

14

Clustering
Clustering method: simulated annealing using the B*-tree

Objective function: φ = αs+ β c
α and β : user-defined parameters.
s: area
c: the path delays between the block ports and the buffers

ports

m0 is the block and { m1, m2, …, m6 } are buffers

3m 4m

6m

1m 2m

0m5m

1n

2n 3n

5n

6n
4n

0n

block port
buffer port

15

Global Optimization

Global
Optimization

by simulated annealing
using the B*-tree

Partitioning
of the module and dissection

of the placement region

Declustering
If regions with < q
clustered modules

positioning constraints

module coordinates

Final
Floorplanning

Clustering

module
coordinates

regions
with < k
modules

Input :
Net list

Geometry
of the chip

Output :
legal

module
placement

16

Global Optimization
Blocks are placed by simulated annealing using B*-tree
in each subregion
Two stages in global optimization steps

Before declustering, the objective function is
After declustering, we modify the objective function as follows:

Cost is used to force blocks to be packed into the chip.
() is the width (height) of regions , and () is

the width (height) of the floorplan in region .
In order to satisfy the fixed-outline constraint, is set to a
huge constant

Φ+Γ=Γ′ γ

),0max(),0max(rmrm HHWW ρρρρ −+−=Φ

Γ

where

Φ
rH ρ

mWρρ rH ρ
rWρ

γ
ρ

(fixed-outline constraint)

17

Partitioning

Global
Optimization

by simulated annealing
using the B*-tree

Partitioning
of the module and dissection

of the placement region

Declustering
If regions with < q
clustered modules

positioning constraints

module coordinates

Final
Floorplanning

Clustering

module
coordinates

regions
with < k
modules

Input :
Net list

Geometry
of the chip

Output :
legal

module
placement

18

Partitioning
After the global optimization process, each region is
dissected into two subregions.
Blocks are divided into two groups according to their
coordinates.

0m

6m

1m
2m

4m
3m

7m

9m8m

5m

},,,,{ 98765 mmmmmM =′ρ

},,,,{ 43210 mmmmmM =′′ρ

},...,,{ 910 mmmM =ρ

19

Partitioning (cont’d)
The summation of the module areas of and are
approximately the same, and the area of subregion is
dissected correspondingly.

If
Sort blocks according to the x-coordinates.
Cut the region vertically.

If
Sort blocks according to the y-coordinates.
Cut the region horizontally.

rr HW ρρ >

rr WH ρρ >

ρM ′ ρM ′′

20

Alternate Global Optimization and
Partitioning Steps

Global
Optimization

by simulated annealing
using the B*-tree

Partitioning
of the module and dissection

of the placement region

Declustering
If regions with < q
clustered modules

positioning constraints

module coordinates

Final
Floorplanning

Clustering

module
coordinates

regions
with < k
modules

Input :
Net list

Geometry
of the chip

Output :
legal

module
placement

21

Alternate Global Optimization and
Partitioning Steps

Alternate global optimization and partitioning steps until
the number of blocks in every region is smaller than q.

0m

6m

1m
2m

4m
3m

7m

9m8m

5m

level 0

0m 1m
2m

4m
3m

6m 7m

9m8m

5m

level 1

0m

6m

1m
2m

4m
3m

7m

9m

8m

5m

level 2

0m

6m

1m
2m

4m
3m

7m

9m

8m

5m

level 3
If q = 2

22

Declustering

Global
Optimization

by simulated annealing
using the B*-tree

Partitioning
of the module and dissection

of the placement region

Declustering
If regions with < q
clustered modules

positioning constraints

module coordinates

Final
Floorplanning

Clustering

module
coordinates

regions
with < k
modules

Input :
Net list

Geometry
of the chip

Output :
legal

module
placement

23

Declustering
Expand each block node in the B*-tree into a
subtree representing the clustered blocks.

Construct a new larger B*-tree using these
subtrees.
There are two kinds of relations between two
connected nodes in the original tree.

Left relation (left child) and right relation (right child)

tailc

rootc

naBa

3m 4m

6m

1m 2m

0m5m

24

Declustering – Last Contour
Record the last contour when performing B*-tree
packing

The root node of the contour croot represents the left- and top-
most cell of the clustered block.
The tail node of the contour ctail represents the right- and top-
most cell of the clustered block.

rootc

tailc

last contour

rootc

tailc

a clustered block

rootn

Denomination:
: the root node of the last contour
: the last node of the last contour
: the root node of the subtreerootn

25

Declustering – Left Relation
If the block node n1 is the left child of the block node n2

Connect the root of n1 subtree to the left child of the node ctail

n'i

n'j

n2

n1
tailc

rootcrootn

The original tree

rootc

tailc rootn

b2
b1

26

Declustering – Right Relation
If the block node n1 is the right child of the block node
n2

Connect the root of n1 subtree to the right child of the node croot

n'i

n'j

n2

n1

rootc

tailc

rootn

The original tree

rootc

tailc

rootn

b2

b1

27

Final Floorplanning

Global
Optimization

by simulated annealing
using the B*-tree

Partitioning
of the module and dissection

of the placement region

Declustering
If regions with < q
clustered modules

positioning constraints

module coordinates

Final
Floorplanning

Clustering

module
coordinates

regions
with < k
modules

Input :
Net list

Geometry
of the chip

Output :
legal

module
placement

28

Final Floorplanning
Select two blocks randomly
and swap them.
Use the same objective
function as the one in the
global optimization step.
Accept the solution only if it
does not violate the outline
constraint.
Re-compute the coordinates of
blocks at the changed
subregions.

0m
1m

2m
4m

3m

7m

9m

8m

5m 6m

6m

7m

4m

29

Summary of Our Algorithm

Partitioning
step

of clustered
modules for each
region <q

Declustering

Optimization
step

Partitioning
step

of modules for
each region <k

Final
placement

Output file

Finish

Yes

No

Yes

No

Start

Clustering

Input file

Optimization
step

The parameters q and k are defined
by a heuristic method according to
the ratio of total block area to the
chip area.

30

Outline

Conclusions

Introduction

Review of the
B*-tree Representation

Our Placement Method

Experimental Results

31

Experimental Setup
Platform

1.2GHz SUN Blade 2000 with 8GB memory
Use seven benchmark circuits provided by the
foundry UMC and the design service company
Faraday.
Compare the following algorithms

B*-tree alone (DAC-00)
TCG alone (DAC-01)
Our method

32

Test Cases
blocks + # buffers ranges from 31 to 412.
Chip density is from 42% to 88%.

0.30.70.72764440x444038428fc5

0.30.70.87884040x404038428fc7

0.30.70.87884040x404038428fc6

0.7

0.7

0.5

0.5

α

0.30.72764440x444038428fc4

0.30.65844240x424032023fc3

0.50.55983440x344016812fc2

0.50.42161040x1040256fc1

βBlocks area/chip area chip area#
buffers

blocksCircuit

33

CPU Time Comparison

Because of the large
problem size, the
TCG alone algorithm
is only feasible for
the first two cases.

On average, B*-tree
alone algorithm
needs 28% more
CPU time than our
method does.

0

0.5

1

1.5

2

2.5

3

3.5

4

fc1 fc2 fc3 fc4 fc5 fc6 fc7

Normalized CPU Time

B*-tree alone TCG alone Our method

34

Total Path Delay Comparison

On average, the
path delay obtained
by B*-tree alone
(TCG alone) is 1.52
(1.84) times than
ours.

0

0.5

1

1.5

2

2.5

fc1 fc2 fc3 fc4 fc5 fc6 fc7

Normalized Total Path Delay

B*-tree alone TCG alone Our method

35

Max Input/Output Skew
On average, the max skew obtained by B*-tree
alone (TCG alone) is 1.47 (1.19) times than
ours.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

fc1 fc2 fc3 fc4 fc5 fc6 fc7

Normalized Max Output Skew

B*-tree alone TCG alone Our method

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

fc1 fc2 fc3 fc4 fc5 fc6 fc7

Normalized Max Input Skew

B*-tree alone TCG alone Our method

36

Result Summary
On average, the total cost obtained by B*-tree
alone (TCG alone) is 2.04 (1.52) times than
ours.

332.80

1.28

1.00

CPU
time

1.19

1.49

1.00

Max
input
skew

1.84

1.52

1.00

Total
path
delay

1.52

2.04

1.00

Cost Γ

1.18TCG
alone

1.38B*-tree
alone

1.00Our
Method

Max
output
skew

37

Placement Results
fc5
blocks +
buffers = 412

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

fc3
blocks +
buffers = 343

38

Outline

Conclusions

Introduction

Review of the
B*-tree Representation

Our Placement Method

Experimental Results

39

Conclusions
We presented a B*-tree based hierarchical top-
down method for the block and input/output
buffer floorplanning for flip-chip designs.

Experimental results based on real industrial
flip-chip designs have shown the effectiveness
and efficiency of our algorithm.

Future work lies in developing other heuristics
to slice the chip to further improve the results.

40

Thank you for Thank you for
your attention.your attention.

41

42

Our Algorithm (cont’d)
Clustering step:

Cluster a block and its corresponding I/O buffers to a clustered
block.
In the following global optimization and partitioning step, a
clustered block is represented by a block node.

Global optimization and Partitioning step:
After the clustering steps, we go into the main steps of
alternating and interacting global optimization and partitioning
step.
In global optimization step, we place blocks based on
simulated annealing using the B*-tree to minimize the objective
function.
In partitioning step, the chip is dissected into two subregions.
The blocks are divided into two groups according to their
coordinates and are placed in respective subregions.

43

Our Algorithm (cont’d)
Declustering step:

Until each region contains at most q clustered blocks, we
decluster these clustered blocks.
A clustered block represented by a block node is expanded into
a subtree representing the clustered block’s component which
are constructed at the clustered step.

Final Floorplanning
After the declustering step, the global optimization and
partitioning steps repeat until each region contains at most k
blocks.
In the final floorplanning step, we refine the floorplan by
purturbing blocks inside a subregion as well as in different
regions

44

The parameters q and k
Define the q and k by a heuristic method

q = # clustered_blocks;

k = # blocks;

r = total_blocks_area/chip_area /*utilization ratio*/
If (r < 0.75);

q = 10 x r;
k = 10 x r x (# blocks / # clustered_blocks)

else
k = 10 x r x (# blocks / # clustered_blocks)

q = max{q,3}; /* the smallest q = 3*/
K = max{k,20}; /*the smallest k = 20*/

45

0.73
1.46
1.11
1.33

1.32

32 s
2.64e+06

100
120

28430

33.83
1.31
1.11
1.00

1.60

1 s
2.01e+06

90
120

17760

1.01 s CPU Time
1.02.95e+06 Cost Γ
1.0100 Max. output skew
1.0160 Max. input skew

1.0 23390 Tot. path delay

fc1

TCG aloneB*-tree aloneCkt Our Method

1.29
1.79
1.36
1.37

1.44

9944 s
2.86e+08

1740
1390

750450

631.7
1.72
1.25
1.38

2.08

16 s
1.66e+08

1390
1010

361650

1.020 sCPU Time
1.02.97e+08 Cost Γ
1.01890 Max. output skew
1.01360 Max. input skew

1.0 521030 Tot. path delay

fc2

1.66
3.00
1.47
2.00

1.67

> 10 hr
NR
NR
NR

NR

-
-
-
-

-

51 s
4.14e+08

1700
1660

619200

1.085 s CPU Time
1.01.24e+09 Cost Γ
1.02500Max. output skew
1.03320Max. input skew

1.0 1033800 Tot. path delay

fc3

46

1.80
1.84
1.18
1.54

1.59

> 10 hr
NR
NR
NR

NR

-
-
-
-

-

72 s
7.54e+08

2380
2190

726040

1.0130 s CPU Time
1.01.39e+09 Cost Γ
1.02820Max. output skew
1.03380Max. input skew

1.0 1153560 Tot. path delay

fc4

TCG aloneB*-tree aloneCkt Our Method

1.66
2.71
1.48
1.91

1.37

> 10 hr
NR
NR
NR

NR

-
-
-
-

-

78 s
5.57e+08

2160
1730

707430

1.0130 sCPU Time
1.01.51e+09 Cost Γ
1.03200Max. output skew
1.03300Max. input skew

1.0 969140 Tot. path delay

fc5

0.68
1.69
1.39
1.19

1.65

> 10 hr
NR
NR
NR

NR

-
-
-
-

-

160 s
1.34e+09

3140
3000

745880

1.0108 s CPU Time
1.02.26e+09 Cost Γ
1.04360Max. output skew
1.03580Max. input skew

1.0 1233720 Tot. path delay

fc6

NR: No Result

47

1.11
1.82
1.65
1.11

1.59

> 10 hr
NR
NR
NR

NR

-
-
-
-

-

226 s
1.45e+09

2860
3500

729180

1.0251 s CPU Time
1.02.65e+09 Cost Γ
1.04720Max. output skew
1.03880Max. input skew

1.0 1159560 Tot. path delay

fc7

TCG aloneB*-tree aloneCkt Our Method

Because of the higher complexity, the TCG based
floorplanner alone is only feasible for the first two cases

The B*-tree based algorithm (the TCG based algorithm) in
the overall cost of 2.04 times (1.52 times) of that of our
algorithm

The B*-tree based algorithm (the TCG based algorithm)
needs 1.28 times (more than 332 times) of our CPU times

