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!'- Motivation: Temperature problems



The problem of heat removal
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Interesting (certainly novel) approaches to cooling
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Chip cooling technologies
( "Cooling a 200W Light Bulb that is the Size of a Postage Stamp”)
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= Microchannels

[Viswanath et al., Intel]

Air cooling (passive or active)
Heat sink

Thermal interface materials
(TIMs), heat spreaders

= Next generation TIMs shows
much better thermal
conductivity

Thermal vias

= Peltier elements




i Cost of cooling a microprocessor

40

Cooling Solution Cost (§)
B

10

0 : : : : .
20 30 40 &0 &0 70 a0

Fower Dissipation (W)

[Intel, via Hannemann]



Physical limitations on heat sinks
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Thermal Resistance (C/W)
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!'- Motivation: Electrothermal effects



i Heat flux maps vs. temperature maps
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i On-chip temperature variations

Heat Flux (W/cm?) Temperature Variation (° C)
Results in V. variation
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i Temperature contours: Core vs. cache
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Average and Peak Power as a % of Max Peak

Power as a function of application
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Leakage current effects

Leakage current varies

exponentially with temperature

Self-consistent solutions
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Reliability impact

= Electromigration
= Black’s equation: increased temperature reduces mean time to

failure

= MTTF = A, (J —J,,)" e EakT
= Hot carrier injection
= Negative bias temperature instability (NBTI)
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Electrothermal design

Simple approach o

Integrated approach

= Include thermal effects during
analysis, optimization
= Tightly coupled
analysis/optimization
Temperature affects
= Leakage power
= Timing
= Higher temperatures reduce V-,
reduce mobility

Temperature is affected by
= Leakage power
= Timing
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!'- Thermal analysis



Thermal analysis

= Heat generation
= Switching gates/blocks act as heat sources
= Time constants for heat of the order of ms or more

= Temperature alters device behavior, switching speeds
= Strong local spatial characteristics
& =

heat sources

wafer

y
ZZ’X
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Thermal analysis

Thermal equation: partial differential equation
2 2 2
o°T o°T o°T
KX—2 == Ky—2 + KZ—2 +Q(x,y,2)=0
OX oy 0z
Boundary conditions corresponding to the ambient, heat sink, etc.
Self-consistency

= Power is a function of temperature, which is a function of power!
= Often handled using iterations

Some solution techniques

= Numerical: solve large, sparse systems of linear equations
= Finite difference method
= Finite element method

= System structure is similar to power grid systems

= Semi-analytical
= Green functions




The finite difference approach

= Finite difference method
= Discretize into elements; assume element temp. constant
= Thermal-electrical analogy
= Can find “thermal resistance” values between element centers
= Eliminate internal mesh nodes to get
GT=P
= G is the thermal conductance matrix

= T and P are the temperature and power density vector over mesh nodes
on the top surface of the wafer
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The finite element approach

s Also a discretization methods

= Discretize into elements; use polynomial interpolation based on
values at nodes

= Use “element stamps” and assemble these into a larger matrix
= Apply boundary conditions to get

GT=P
= (G here is denser and smaller than for FDM)
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Element stiffness matrix

= Stamp for a hexahedral element
= Rows and columns correspond to nodes 1 - 8
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i Element and global matrices

= Elements are aligned in a grid pattern
» Element matrices, k, are calculated for each element

= Similar to the Modified Nodal Formulation:
= These stamps, K, are added to the global matrix, K

= Now solve

global

Kglobal T=P
m P = power vector, T = temperature vector



Reducing the global matrices using fixed
i temperatures ("ground nodes”)

= Starting with a global system of equations
= | X, are the unknown values
= X, are fixed values

= Eliminate rows and columns corresponding to fixed values

IR = R - K2k

= Results in a reduced system of equation
= Applicable to both FEA and force-directed methods



i The Green function method

Adiabatic VZT(X, y, Z) -0

s Problem definition

S
W”

Convective
P,— power density, k —thermal conductivity, h — heat transfer coefficient
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i The Green function method (contd.)

Source (x',y")
O
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Field (X,y)

Advantages:

- no 3D meshing necessary

-

2

O
Field (X,y)

- can do localized solve efficiently
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i The Green function method (contd.)
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Fast computation techniques

= Algorithm I: Table look-up approach [Zhan, ASPDACO05]

= Solve the double infinite summation issue
= Suitable for sensitivity analysis and incremental calculation

= Algorithm Il: Frequency domain computation approach
[Zhan, ICCADOS5]

= Solve the pair-wise calculation issue
= Suitable for full-chip temperature profiling

= Algorithm 111: Precorrected FFT approach
= Solve problems with local high accuracy requirements
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Sample results

cmz)
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Runtime comparison

Algorithm I: 30msec

Algorithm II: 10msec
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Another example

2

Power Density (W/cm?)

T-Ta (C)

1024x1024 grid cells
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!'- Electrothermal Optimization/Mitigation



Electrothermal optimization

= Various techniques at all levels of design

= Some examples
= Architectural optimizations

= Thermal mitigation
= Placement
= Application of body biases

31



Power as a function of application

Average and Peak Power as a % of Max Peak

Recall

+
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Architectural mitigation

Work by Skadron, Stan et a/. at
Virginia

Coarse FDM model (HotSpot)
Coupled with microarchitectural

simulator —

. 0 Interconnect
Can be used for analyzing and ayer. Thermal Model
optimizing microarchitectures HeatSink ;i1 i1 11| ~SiliconDie

g

Integrate clock gating/dynamic
voltage scaling optimizations

Fin-to-air convection thermal resistor—9

[Stan]
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Placement

spring force attracts
connected cells together

Spatial distribution of cells can
affect temperature distributions

3D circuits: thermal issues are 2 e ‘

‘‘‘‘‘

much stronger

Force-directed approach i \ E

Thermal’gradients force cells
away from hot spots 34



i Heat removal through thermal vias (3D)

21§
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Heat removal through thermal vias (3D)

0.015
0.015

-0.015 -0.015

Before After

36



| Measuring temperature

= Place thermal sensors (diodes) at various points

[McGowen, Intel]

37



Adaptive body bias

[J. Tschanz, ISSCCO02]
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Within-die adaptive body bias

Apply I:target

{ Reduce F, .. <

Compensating for within-die variation

- Apply NMOS bias to all circuit blocks
[ Circuit | [ 1( ) |
Block | .
Circuit Block 1: Circuit Block n:
. [PD][ [PD J|[PD | Adapt PMOS @@ ® | Adapt PMOS
- O . \ bias bias
PD = SlEE PD Measure P __, Measure P,__,
Gen. of block of block
: o B i y Y
PD PD PD Pick best NMOS/ Pick best NMOS/
PMOS bias PMOS bias
v v
\ J \ J \ / Measure total die leakage P,__,
Area overhead: Py < Q,eak L =

Similar to ABB ¥ VES
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Conclusion

= Temperature issues are vital for nanometer-scale designs
= Old metrics (power, etc.) aren’t good enough

= A coordinated electrothermal design strategy is essential
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