
An Anytime Symmetry Detection
Algorithm for ROBDDs

Neil Kettle and Andy King

University of Kent, Canterbury, CT2 7NF, United Kingdom

January 2006

Symmetry Applications

Symmetries have applications in :-
Logic Synthesis
Technology Mapping
ROBDD Minimization
and detecting equivalence of Boolean functions for
which input correspondence is unknown

Preliminaries

Binary Decision Diagrams (BDDs) are an
efficient tree-based data structure for the
representation of Boolean functions

A BDD for a Boolean functions f is a directed
acyclic graph (DAG), internal vertices represent
variables over which the function fi is defined

Each of these vertices is labeled with a variable
xi , and possesses two leaves, one leaf
represents the true co-factor and the other
represents the false co-factor

Let |G| denote the size of a BDD (i.e the
number of vertices or nodes) over n variables

Preliminaries

��GFED@ABCx2

0

��

1

!!B
BB

BB
B

GFED@ABCx1
1

��

0

~~||
||

|

0 1

Figure: BDD for x1 ∧ x2

Preliminaries

A co-factor of a Boolean function f (x1, . . . , xn)
denoted f |xi←b defines a Boolean function
f (x1, . . . , xi−1, b, xi+1, . . . , xn) where b ∈ {0, 1}
It is most common to specify multiple (2)
variable co-factors, denoted f |xi←b1,xj←b2

where
i < j defines a Boolean function
f (x1, . . . , xi−1, b1, xi+1, . . . , xj−1, b2, xj+1, . . . , xn)

Symmetries

A Boolean function f (x1, . . . , xn) is “classically
symmetric” in (xi , xj) iff it is equivalent to the
function remaining unchanged should xi and xj

be switched in f

It can be shown that this is equivalent to,

f |xi←1,xj←0 = f |xi←0,xj←1

Early Work

Very early work on symmetries involved
computing all n2 − n co-factor pairs where n is
the number of variables

Computing these co-factors requires
O(n2(|G| log |G|)) time

However, this does not include the creation of
order > n2|G| nodes (not to mention reduction)

Mishchenko’s 1 Algorithm

Does not require co-factor computation

≈ O(|G|3) complexity

Presented results are indicative, experimental
observation indicates the algorithm is
“intractable” for |G| > 180, 000
Employs ZDD’s for set operations,

paper argues creating ZDD’s is irrelevant, however,
in practice this is inhibiting for very large functions

Algorithm is “monolithic”

1A. Mishchenko. ‘Fast Computation of Symmetries in Boolean
Functions’. IEEE Transactions on Computer-Aided Design,
22(11):1588-1593, 2003

Outline

The algorithm presented here can be
decomposed into the following steps,

we employ techniques developed in early work to
sieve, that is quickly detect asymmetries
finally, remainder symmetries are computed using a
further procedure

Algorithm is “anytime”

An anytime algorithm returns the best answer
possible even if it is not allowed to run to
completion, and may improve on the answer if
it is allowed to run longer.

Outline

A← ComputeAsymmetry(f)
S ← ∅
for i = 1 to n − 1 do

C ← { j | (i , j) 6∈ (S ∪ A) ∧ i < j}
D ← RemoveAsymmetry(f , i , C)

S ← S ∪ {(i , k), (k , i) | k ∈ D}
A← A ∪ {(i , l), (l , i) | l ∈ C \ D}

return S

The set C contains variables for which
symmetry/asymmetry is unknown with variable i

The set D contains those variables of C that are
asymmetric with variable i

The sets S and A contain pairs of symmetric and
asymmetric variables respectively

Computing Asymmetries

The following Lemmas describe the two
asymmetry sieves found in 2

Lemma
If an ROBDD f over a set of variables
X = {x1, . . . , xn} is symmetric in the pair (xi , xj)
and i < j , then every ROBDD rooted at a node
labeled xi must contain a node labeled xj .

2D. Moller, J. Mohnke, and M. Weber. ‘Detection of Symmetry of
Boolean functions Represented by ROBDDs’, International Conference on
Computer-Aided Design, 680–684, 1993

Computing Asymmetries

Lemma
If an ROBDD f over a set of variables
X = {x1, . . . , xn} is symmetric in the pair (xi , xj)
and i < j , then every path from the root of f to a
node labeled xj must visit a node labeled xi .

Proofs for both Lemmas found in 2

All asymmetries can be found in time O(n|G|)
using one top-down and one bottom-up
traversal

2D. Moller, J. Mohnke, and M. Weber. ‘Detection of Symmetry of
Boolean functions Represented by ROBDDs’, International Conference on
Computer-Aided Design, 680–684, 1993

Computing The Rest...

We now attempt to resolve the remaining
unknown variable pairs without co-factor
computation

Corollary

An ROBDD f over a set of variables
X = {x1, . . . , xn} is symmetric in the pair (xi , xj)
and i < j iff

every ROBDD rooted at a node labeled xi is
symmetric in (xi , xj) and,

every path from the root to a node labeled xj

passes through a node labeled xi .

Computing The Rest...

Observe, we have already filtered all pairs
satisfying the second property

since, any such node xj can reach the root without
visiting a node labeled xi

therefore, we don’t consider them

The procedure must therefore compare all
co-factors of xi with respect to xj (the first
property)

Optimized Algorithm

Optimizing our algorithm is possible because of
its decomposed structure (this is not possible
with previous approaches)

Further linear time asymmetry sieves can be
incorporated to increase the size of the set A

We can also exploit the transitivity of the
symmetry relation

Optimized Algorithm

A← ComputeAsymmetry(f)
M ← ComputeSatisfyCounts(f)
for i = 1 to n do

for j = i + 1 to n do
if M(i) 6= M(j) then

A← A ∪ {(i , j), (j , i)}
S ← ComputeAdjSymmetry(f)
for i = 1 to n − 2 do

(A, S)← SymmetryClosure(A, S)
C ← { j | (i , j) 6∈ (S ∪ A) ∧ i + 1 < j}
D ← RemoveAsymmetry(f , i , C)

S ← S ∪ {(i , k), (k , i) | k ∈ D}
A← A ∪ {(i , l), (l , i) | l ∈ C \ D}

return S

Table: Experimental Results

Circuit # In # Out Σ|G| |S| näıve Mishchenko S O

pair 173 137 118066 1910 132.46 6.62 2.37 2.08
s4863 153 104 126988 547 20.60 5.30 1.41 0.82
s9234.1 247 250 4434504 3454 >7200 1407.20 183.84 141.26
s38584.1 1464 1730 150554 15629 337.59 16.70 3.12 2.80
C880 60 26 600998 262 704.54 13.90 7.75 5.20
C3540 50 22 4618194 81 >7200 132.72 71.64 65.04
urquhart2 25 48 1 722657 5 >7200 70.50 26.22 17.95
urquhart3 25 62 1 1771025 24 >7200 >7200 82.98 72.80
urquhart4 25 68 1 1736705 27 >7200 >7200 83.44 72.02
rope 0002 54 1 634914 3 >7200 192.77 22.48 18.50
rope 0004 62 1 1052214 10 >7200 487.26 41.71 37.82
rope 0006 61 1 759039 13 >7200 657.74 35.78 30.68
ferry8 111 1 290127 30 >7200 95.15 30.10 22.99
ferry10 116 1 539419 38 >7200 1866.62 70.34 53.42
ferry12 123 1 277291 36 >7200 142.10 37.63 30.95
gripper10 125 1 393485 28 >7200 261.32 52.97 44.74
gripper12 129 1 667877 43 >7200 368.50 106.32 84.90
gripper14 118 1 767735 40 >7200 415.57 111.49 71.34

Conclusions

Our algorithm allows some symmetries to be
detected without computing all symmetries

thus algorithm runtime can be tuned (anytime)

Our runtimes are very favourably compared to
those of Mishchenko

If further linear time sieves can be devised,
then our algorithm’s runtime will improve with
little or no extra cost

The algorithm presented uses more intelligence,
filtering many pairs before computing
symmetries with RemoveAsymmetry(f , i , C).

Questions

Thank You.

	Preliminaries
	Symmetries in Boolean functions
	Definition
	Early work

	Our Algorithm
	Computing Asymmetries
	Computing The Rest...
	Optimized Algorithm

	Conclusions

