High Level Equivalence Symmetric Input Identification

> Ming-Hong Su, Chun-Yao Wang National Tsing Hua University, Taiwan

Outline

- Introduction
- Previous Work
 - BDD-Based
 - Simulation-Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

Symmetries

(1) Nonequivalence symmetry $\Rightarrow f_{\bar{x}_i \bar{x}_j} = f_{x_i \bar{x}_j}$, denoted as NE(x_i, x_j) (2) Equivalence symmetry $\Rightarrow f_{\bar{x}_i \bar{x}_j} = f_{x_i x_j}$, denoted as E(x_i, x_j)

Reference:C.C. Tasi "Boolean Matching Using Generalized Reed-Muller Forms", 1994

Formulation

Input: Circuit (N-input, M-output)
Output: Maximal equivalence symmetric input sets

Outline

- Introduction
- Previous Work
 - BDD-Based
 - Simulation-Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

BDD-based Approach

If the ROBDD of f_{xixj} and f_{xixj} are isomorphic, then x_i and x_j are NE-symmetry
If the ROBDD of f_{xixj} and f_{xixj} are isomorphic, then x_i and x_j

are E-symmetry

Limitations

- For the design whose corresponding BDD cannot be built, BDD-based approaches cannot be applied
- Time of building BDD depends on the ordering of inputs
 - Optimal ordering is NP-complete

Simulation-based Approach

• Without BDD construction

• Applicable to behavior level or RT-level

Difficulties

- Generating and simulating complete patterns is time-consuming
 - Complexity is O(2ⁿ)
- Comparing all patterns to obtain the symmetric relations among all inputs is intractable
 - Complexity is $O(2^n \times 2^n)$

- Introduction
- Previous Work
 - BDD Based
 - Simulation Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

Overview

- Identify two inputs as E-asymmetric is easier than to identify two inputs as E-symmetric
- Based on "negative thinking" to distinguish as many E-asymmetric inputs as possible
- The remaining inputs are possibly E-symmetric inputs

E-asymmetric inputs

Inputs

E-asymmetric Inputs (1/2)

- Legal Pattern Pair: A pair of patterns whose assignments are identical except on inputs x_i and x_i , and $x_i = x_i$ (00 or 11) in each pattern
 - For any two inputs in an N-inputs circuit, there are 2^{N-2} legal pattern pairs
- Two inputs are E symmetric inputs while the outputs of each legal pattern pair are identical. Otherwise they are E asymmetric inputs

E-asymmetric Inputs (2/2)

Variable Pair

- Variable Pair (VP): A pair of variables x_i and x_j is denoted as
 - $VP(x_i, x_j)$ if they have not been recognized as symmetric or asymmetric

Symmetric-Asymmetric Inputs (SASIs)

• SASIs: represent the maximal symmetric input sets

- If any two inputs are not in the same group, then they are E-asymmetric inputs
- If any two inputs are in the same group, then they are "probably" E-symmetric inputs
- Example: for a 6-input circuit, the SASIs representation (12356)(4) indicates that inputs 1,2,3,5,6 are probably E-symmetric inputs and input 4 is E-asymmetric input to the other inputs
- If SASIs representation could be divided into 6 groups, then all inputs are E-asymmetric inputs

VPs and SASIs

• Grouping all VPs to form the corresponding SASIs

Example: a 10-input circuit with 6 VPs {(1,2),(2,3),(3,4),(5,6), (6,7),(8,9)}

 $VPs\{(1,2),(2,3),(3,4),(5,6),(6,7),(8,9)\}$

(567)

SASIs=(1234)(567)(89)(A)

(1234)

MEG and SEG

- MEG (Multiple Element Group): A group contains more than one element
- SEG (Single Element Group): A group contains only one element

Distance (1/2)

• The distance of $VP(x_i, x_j)$ in an MEG is the difference of relative position of x_i and x_j

Position 1 Position 7

distance 6

Distance of VP(1,7) is 6

MEG (13579BD)

Position 2 Position 6

distance 4

Distance of VP(3,B) is 4

Distance (2/2)

• For an MEG with K elements, the maximal distance is (K-1) and the number of VPs with distance i is (K - i)

MEG (123456)

5 VPs with distance 1
4 VPs with distance 2
3 VPs with distance 3
2 VPs with distance 4

1 VPs with distance 5

Pattern Set

• A pattern with N bits, the set that consists of all patterns with m 1s and (N - m) 0s is denoted as θ_m^N • Ex: $\theta_1^5 = \{10000, 01000, 00100, 00010, 00010, 00010, 00011\}$

Circular Pattern Set

$\alpha_{1,1}^5 = \theta_1^5$		$lpha_{\scriptscriptstyle 2,1}^{\scriptscriptstyle 5}$		$lpha_{3,1}^5$		$lpha_{4,1}^5$		
10000	{1}	11000	{1,2}	11100	{1,2,3}	11110	{1,2,3,4}	
01000	{2}	01100	{2,3}	01110	{2,3,4}	01111	{2,3,4,5}	
00100	{3}	00110	{3,4}	00111	{3,4,5}	10111	{3,4,5,1}	
00010	{4}	00011	{4,5}	10011	{4,5,1}	11011	{4,5,1,2}	
00001	{5}	10001	{5,1}	11001	{5,1,2}	11101	{5,1,2,3}	
		$\alpha_{2,2}^5$		$\alpha_{_{3,2}}^{_{5}}$				
		10100	{1,3}	11010	{1,2,4}			
		01010	{2,4}	01101	{2,3,5}			
		00101	{3,5}	10110	{3,4,1}			
		10010	{4,1}	01011	{4,5,2}	21		
		01001	{5,2}	10101	{5,1,3}			

Theorem

• For an MEG with K elements, circular pattern sets { $\alpha_{m,1}^{K}, \alpha_{m+2,i}^{K}$ } could be used to recognize VPs with distance i and (K-i)

Example (1/2)

For a 10-input circuit, initial SASIs=(123456789A)
Step 1: generate {θ₀¹⁰, θ₂¹⁰} and compare
assume VPs{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)} could not be recognized as asymmetric VPs

• Updated SASIs = (1234567)(8)(9)(A)

Example (2/2)

• Step 2: SASIs = (1234567)(8)(9)(A)• For the MEG (1234567) -Generate $\alpha_{11}^7 \Longrightarrow \{(1), (2), (3), (4), (5), (6), (7)\}$ in θ_1^7 -Generate α_{31}^7 , α_{32}^7 , α_{33}^7 in θ_3^7 • Others are randomly assigned • Comparing $(\alpha_{11}^7, \alpha_{31}^7)$ covers VPs with distance 1 and 6 • Comparing $(\alpha_{11}^7, \alpha_{32}^7)$ covers VPs with distance 2 and 5 • Comparing $(\alpha_{11}^7, \alpha_{33}^7)$ covers VPs with distance 3 and 4 • Updated SASIs = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)24

Outline

- Introduction
- Previous Work
 - BDD-Based
 - Simulation-Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

Experiment Setup

ISCAS'85 benchmarks in Verilog HDL
SUN SPARC II workstation
Compared with [10]

27

Experimental Results

circuit	# in	# out		Time (s)	Symmetry pair		
			Reading	[10]	ours	[10]	ours
c880	60	26	11.57	0.03	1.75	0	0
c1355	41	32	1.30	0.05	0.68	0	0
c1908	33	25			0.28		0
c432	36	7			0.19		0
c499	41	32	1.17	0.05	0.66	0	0
c3540	50	22	18.96	0.08	2.42	0	0
c5315	178	123	>1hr	0.02	49.38	0	0
c2670	233	140	>1hr	0.08	593.04	28	227
c7552	207	108	>1hr	0.17	633.61	6	160
c6288	32	32			0.25	-	0

- Introduction
- Previous Work
 - BDD Based
 - Simulation Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

Conclusions

- Simulation with randomly generated patterns is inefficient due to many redundant patterns are generated for recognized asymmetric VPs
- Propose a systematic pattern generation algorithm to identify E-symmetric inputs