High Level Equivalence Symmetric Input Identification

Ming-Hong Su, Chun-Yao Wang
National Tsing Hua University, Taiwan

Outline

- Introduction
- Previous Work
- BDD-Based
- Simulation-Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

Symmetries

(1) Nonequivalence symmetry $\Rightarrow f_{\overline{x_{i}} x_{j}}=f_{x_{i} \overline{x_{j}}}$, denoted as $\operatorname{NE}\left(x_{i}, x_{j}\right)$
(2) Equivalence symmetry $\Rightarrow f_{\bar{x}_{\mathrm{i}} \overline{\mathrm{x}}_{\mathrm{i}}}=\mathrm{f}_{\mathrm{x}_{\mathrm{x}, \mathrm{x}_{\mathrm{j}}}}$, denoted as $\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$

(2)

Formulation

- Input:

Circuit (N-input, M-output)

- Output:

Maximal equivalence symmetric input sets

Outline

- Introduction
- Previous Work
- BDD-Based
- Simulation-Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

BDD-based Approach

- If the ROBDD of $f_{\overline{x i x}_{j}}$ and $f_{\bar{x}_{\bar{x}} \bar{x}_{j}}$ are isomorphic, then x_{i} and x_{j} are NE-symmetry
- If the ROBDD of $f_{x_{x},}$ and $f_{\bar{x} \overline{x_{j}}}$ are isomorphic, then x_{i} and x_{j} are E-symmetry

NE-symmetry

E-symmetry

Limitations

- For the design whose corresponding BDD cannot be built, BDD-based approaches cannot be applied
- Time of building BDD depends on the ordering of inputs
- Optimal ordering is NP-complete

Simulation-based Approach

- Without BDD construction
- Applicable to behavior level or RT-level

Difficulties

- Generating and simulating complete patterns is time-consuming - Complexity is $\mathrm{O}\left(2^{\mathrm{n}}\right)$
- Comparing all patterns to obtain the symmetric relations among all inputs is intractable
- Complexity is $\mathrm{O}\left(2^{\mathrm{n}} \times 2^{\mathrm{n}}\right)$

Outline

- Introduction
- Previous Work
- BDD Based
- Simulation Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

Overview

- Identify two inputs as E-asymmetric is easier than to identify two inputs as E-symmetric
- Based on "negative thinking" to distinguish as many E-asymmetric inputs as possible
- The remaining inputs are possibly E-symmetric inputs

E-asymmetric inputs

E-asymmetric Inputs (1/2)

- Legal Pattern Pair: A pair of patterns whose assignments are identical except on inputs x_{i} and x_{j}, and $\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}}$ (00 or 11) in each pattern
- For any two inputs in an N -inputs circuit, there are $2^{\mathrm{N}-2}$ legal pattern pairs
- Two inputs are E symmetric inputs while the outputs of each legal pattern pair are identical. Otherwise they are E-asymmetric inputs

E-asymmetric Inputs (2/2)

Input				Output	
A	B	C	D	f 1	f 2
0	0	0	0	0	1
1	1	0	0	1	0
1	0	1	0	0	1
1	0	0	1	1	1
0	1	1	0	0	0
0	1	0	1	1	1
0	0	1	1	1	0
\vdots	\vdots	\vdots	\vdots	\vdots	
\vdots	\vdots	\vdots	\vdots	\vdots	

Variable Pair

- Variable Pair (VP): A pair of variables x_{i} and x_{j} is denoted as $\mathrm{VP}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ if they have not been recognized as symmetric or asymmetric

Symmetric-Asymmetric Inputs (SASIs)

- SASIs: represent the maximal symmetric input sets
- If any two inputs are not in the same group, then they are Easymmetric inputs
- If any two inputs are in the same group, then they are "probably" E-symmetric inputs
- Example: for a 6-input circuit, the SASIs representation (12356)(4) indicates that inputs 1,2,3,5,6 are probably Esymmetric inputs and input 4 is E-asymmetric input to the other inputs
- If SASIs representation could be divided into 6 groups, then all inputs are E-asymmetric inputs

VPs and SASIs

- Grouping all VPs to form the corresponding SASIs
- Example: a 10 -input circuit with 6 VPs $\{(1,2),(2,3),(3,4),(5,6)$, $(6,7),(8,9)\}$

$$
\operatorname{VPs}\{(1,2),(2,3),(3,4),(5,6),(6,7),(8,9)\}
$$

SASIs=(1234)(567)(89)(A)

MEG and SEG

- MEG (Multiple Element Group): A group contains more than one element
- SEG (Single Element Group): A group contains only one element
SASIs=(1234)(567)(89)(A)

MEG SEG

Distance (1/2)

- The distance of $\operatorname{VP}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ in an MEG is the difference of relative position of x_{i} and x_{j}

MEG (1234567)
Position 1 Position 7

Distance of $\operatorname{VP}(1,7)$ is 6

MEG (13579BD)

Position 2 Position 6

Distance of VP $(3, B)$ is 4

Distance (2/2)

- For an MEG with K elements, the maximal distance is (K-1) and the number of VPs with distance i is $(\mathrm{K}-\mathrm{i})$

MEG (123456)

5 VPs with distance 1
4 VPs with distance 2
3 VPs with distance 3

1 VPs with distance 5

Pattern Set

- A pattern with N bits, the set that consists of all patterns with m 1 s and $(\mathrm{N}-\mathrm{m}) 0$ s is denoted as $\theta_{\mathrm{m}}^{\mathrm{N}}$
- Ex: $\theta_{1}^{5}=\{10000$, 01000, 00100, 00010, 00001 \}

Circular Pattern Set

$\alpha_{1,1}^{5}=\theta_{1}^{5}$		α_{21}^{5}		$\alpha_{3,1}^{5}$		$\alpha_{4,1}^{5}$	
10000	\{1\}	11000	\{1,2\}	11100	\{1,2,3\}	11110	\{1,2,3,4\}
01000	\{2\}	01100	\{2,3\}	01110	\{2,3,4\}	01111	\{2,3,4,5\}
00100	\{3\}	00110	\{3,4\}	00111	\{3,4,5\}	10111	\{3,4,5,1\}
00010	\{4\}	00011	\{4,5\}	10011	\{4,5,1\}	11011	\{4,5,1,2\}
00001	\{5\}	10001	\{5,1\}	11001	\{5,1,2\}	11101	\{5,1,2,3\}
		$\alpha_{2,2}^{5}$		$\alpha_{3,2}^{5}$			
		10100	\{1,3\}	11010	\{1,2,4\}		
		01010	\{2,4\}	01101	\{2,3,5\}		
		00101	\{3,5\}	10110	\{3,4,1\}		
		10010	\{4,1\}	01011	\{4,5,2\}		
		01001	\{5,2\}	10101	\{5,1,3\}		${ }^{21}$

Theorem

- For an MEG with K elements, circular pattern sets $\left\{\alpha_{m, 1}^{\mathrm{K}}, \alpha_{\mathrm{m}+2, \mathrm{i}}^{\mathrm{K}}\right\}$ could be used to recognize VPs with distance i and ($\mathrm{K}-\mathrm{i}$)

Example (1/2)

- For a 10-input circuit, initial SASIs=(123456789A)
- Step 1: generate $\left\{\theta_{0}^{10}, \theta_{2}^{10}\right\}$ and compare
- assume VPs\{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)\} could not be recognized as asymmetric VPs
- Updated SASIs = (1234567)(8)(9)(A)

Example (2/2)

- Step 2: SASIs=(1234567)(8)(9)(A)
- For the MEG (1234567)
- Generate $\alpha_{1,1}^{7} \Rightarrow\{(1),(2),(3),(4),(5),(6),(7)\}$ in θ_{1}^{7}
- Generate $\alpha_{3,1}^{7}, \alpha_{3,2}^{7}, \alpha_{3,3}^{7}$ in θ_{3}^{7}
- Others are randomly assigned
- Comparing ($\alpha_{1,1}^{7}, \alpha_{3,1}^{7}$) covers VPs with distance 1 and 6
- Comparing $\left(\alpha_{1,1}^{7}, \alpha_{3,2}^{7}\right)$ covers VPs with distance 2 and 5
- Comparing ($\alpha_{1,1}^{7}, \alpha_{3,3}^{7}$) covers VPs with distance 3 and 4
- Updated SASIs = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)

Flowchart

Outline

- Introduction
- Previous Work
- BDD-Based
- Simulation-Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

Experiment Setup

- ISCAS'85 benchmarks in Verilog HDL
- SUN SPARC II workstation
- Compared with [10]

Experimental Results

circuit	\# in	\# out	Time (s)			Symmetry pair	
			Reading	$[10]$	ours	$[10]$	ours
c880	60	26	11.57	0.03	1.75	0	0
c1355	41	32	1.30	0.05	0.68	0	0
c1908	33	25	--	--	0.28	--	0
c432	36	7	--	--	0.19	--	0
c499	41	32	1.17	0.05	0.66	0	0
c3540	50	22	18.96	0.08	2.42	0	0
c5315	178	123	$>1 \mathrm{hr}$	0.02	49.38	0	0
c2670	233	140	$>1 \mathrm{hr}$	0.08	593.04	28	227
c7552	207	108	$>1 \mathrm{hr}$	0.17	633.61	6	160
c6288	32	32	--	--	0.25	--	0

Outline

- Introduction
- Previous Work
- BDD Based
- Simulation Based
- E-Symmetry Detection Algorithm
- Experimental Results
- Conclusions

Conclusions

- Simulation with randomly generated patterns is inefficient due to many redundant patterns are generated for recognized asymmetric VPs
- Propose a systematic pattern generation algorithm to identify E-symmetric inputs

