Low Area Pipelined Circuits by Multi-clock Cycle Paths and Clock Scheduling

> Bakhtiar Affendi & Takahashi Atsushi Comm. & Integrated Systems Tokyo Institute of Technology

> > 1

Pipelining

- A technique to shrink the clock period
- Circuit divided into number of stages.
- Intermediate registers inserted between stages.
- Problem of current pipelining method:-
 - Extra circuit area from the intermediate registers.
 - Increased the size of clock tree.

Wave Pipelining

- Pipelining without the intermediate registers.
- Exist a number of waves of data in a stage.
- To avoid data collisions need delay balancing.
- Problem of Wave Pipelining:-
 - Delay balancing may increases circuit area.

Purpose

- Circuit with smaller area and works at target clock period range.
- Input :- Pipelined Circuit, clock period range.
- Objective:- Reduce the number of intermediate registers.

Method : Multi-clock Cycle Paths

- Data transmission more than one clock period.
- Allows intermediate registers to be removed.
- Timing constraints must be satisfied.
 - Need delay balancing.

Method : Clock Scheduling

- Intentionally introduce clock skew of register
- Can relax timing constraints.
 - Can improve circuit performance.

Clocking Constraints(1-clock-cycle)

Setup Constraint (No zero-clocking) $d(a) + w_{max}(a,b) \le T + d(b)$

■ Hold Constraint (No double-clocking) $d(b) \le d(a) + w_{min}(a,b)$

Clocking Constraints(Multi-clock-cycle)

Bound of feasible clock period

Setup Constraint (Decide lower bound, Tmin) $d(a) + w_{max}(a,b) \le \beta_{a,b}T + d(b)$ $\beta_{a,b}T \ge d(a) - d(b) + w_{max}(a,b)$

■ Hold Constraint (Decide upper bound, Tmax) $d(b) + \alpha_{a,b}T \le d(a) + w_{min}(a,b)$ $\alpha_{a,b}T \le d(a) - d(b) + w_{min}(a,b)$

- If $\alpha_{a,b} \neq 0$ exist an upper bound of clock period.

Target type of Circuit

- Reduce number of intermediate registers.
- Works at target clock period range δ .

- To reduce number of intermediate registers:-
 - Need to analyze a circuit with multi-clock cycle paths.
 - Need to know minimum feasible clock period of the circuit.

Clock Period Range δ

Setup Constraint (Decide lower bound, Tmin)

 $\beta_{a,b}T_{\min} \ge d(a) - d(b) + w_{\max}(a,b)$

Hold Constraint (Decide upper bound, Tmax)

$$\alpha_{a,b} T_{max} \le d(a) - d(b) + w_{min}(a,b)$$
$$\delta = T_{max} - T_{min}$$
$$\alpha_{a,b} (T_{min} + \delta) \le d(a) - d(b) + w_{min}(a,b)$$

If clock period range given, by using above constraints:-

– Can get circuit works correctly between Tmin and (Tmin+ δ).

Minimum Clock Period with clock period range

- Problem formulation
 - Input: $W_{max}(a,b), W_{min}(a,b)$, clock period range δ .
 - Output: minimum clock period T.
 - Subject to: for each path between registers
 - $d(a) d(b) \le \beta T w_{max}(a, b)$
 - $d(b) d(a) \le w_{\min}(a, b) \alpha \delta \alpha T$
 - β, α : Given constants
 - d(a) : Clock input timing (variable)
 - Assumption
 - Arbitrary clock input timing is possible.
 - Clock-timing realization is independent of circuit. (given signal propagation delays are fixed)

Feasibility Check by Constraint Graph

- Clock period T is feasible if and only if constraint graph has no negative weight cycle.
- Use shortest path algorithm to check there are negative cycle or not. circuit graph

Original Algorithm [1] – Overview

Target circuit : Contains 1-clock cycle path only.

[1] : Practical Fast clock schedule design (Takahashi, 2005 18th karuizawa workshop)

Problem of Original Algorithm

Apply original algorithm to circuit contains multi-clock cycle path.

Definition for type of cycle

Proposed Algorithm – Overview

Proposed Algorithm: Example

w(c2)=-T+6 Searching Range (L=4,U=8)

1) (L=4,U=8) Check L :-

 T=4,w(c1)= 4T-20= -4 c1 is negative,P-type

2) (L=4,U=8) Check U :-

 T=8,w(c2)= -T+6= -2 c2 is negative,M-type Bound(c2)=6 = new U

• T=5,no negative cycle

Z-Edge (Setup) D-Edge (Hold)

Experiment Results

		Proposed		Original	
* <i>δ</i> [ps]	circuit	Tmin [ps]	Tmax [ps]	Tmin [ps]	Tmax [ps]
0	Add1	2407	2407	NA	NA
150	Add1	2560	2710	NA	NA
0	Add2	2231	2231	2231	2231
250	Add2	2560	2810	NA	NA

* δ is target clock period range (Input)

Proposed algorithm can find minimum feasible clock period of a circuit with multi-clock cycle paths.

Reduction on the number of registers

Experiments : Input Circuit (Pipelined Adder)

Experiments : Input Circuit (Pipelined Multiplier)

- 2-Stage.
- Multiply two 16-bit numbers.
- 1st stage : Carry Save adder with wallace tree structure.
- 2nd stage : Carry look ahead adder.
- Process Library ROHM 0.35um.
- Scheduled I/O pins and registers.
- Circuit Statistic:-

#FF	1 st S	tage	2 nd Stage		
	(p	s)	(ps)		
120	757	5075	373	4050	

Experiments Results : Pipelined Adder

Experiments Results : Pipelined Multiplier

Conclusions

Conclusion:-

- Number of intermediate registers can be reduced by multi-clock cycle paths and clock scheduling.
- Future Works:-
 - Proposed algorithm only insert intermediate registers to satisfy timing constraints.
 - Consider delay balancing together with intermediate register insertion.