

Newton: A Library-Based Analytical Synthesis Tool for RF-MEMS Resonators

Authors: Michael S. McCorquodale, James L. McCann, and Richard B. Brown

Lecturer: Michael S. McCorquodale, Ph.D. Mobius Microsystems, Inc.

ASP-DAC 2006, Yokohama

Mobius Microsystems

Slide 1 of 27

Outline

Introduction to MEMS simulation and synthesis approaches

- Finite element analysis
- Nodal analysis
- Automated design synthesis
- Library-based analytical synthesis (Newton)

Example analytical expression and computational algorithm

- CCB resonator design overview
- Euler-Bernoulli method

Tool framework

- Graphical user interface
- Synthesis engine

A synthesis example and experimental results

Conclusion

Slide 2 of 27

Introduction to MEMS simulation and synthesis approaches

Introduction

Challenges with MEMS design automation

- Devices are similar to analog circuits
- Myriad of devices
- Fabrication processes not standardized and vary

Current MEMS DA approaches

- Simulation
- Synthesis

Slide 4 of 27

MEMS simulation approaches

Finite element analysis

- Application: arbitrary device-level design
- Approach: develop solid model for device, decompose into finite elements (mesh), set mechanical boundary conditions, perform simulation or analysis
- Pros/cons: accurate and versatile, but requires substantial design effort

Nodal analysis

- Application: arbitrary device-level design
- Approach: construct devices from parameterized geometric building blocks (e.g. beams, gaps, anchors) and simulate using nodal approach
- Pros/cons: faster than FEA, though design iteration required

MEMS synthesis approaches

Automated design synthesis

- Application: arbitrary device-level design
- Approach: evolutionary using multi-objective genetic algorithms
- Pros/cons: enables rapid design space exploration though requires design iteration

Library-based analytical synthesis

- Application: direct synthesis of specific devices from performance objective
- Approach: use parameterized analytical formulations to directly synthesize physical design and equivalent electrical model
- Pros/cons: very fast though accuracy limited to model quality and synthesis limited to specifically supported devices

Slide 6 of 27

Newton: A library-based analytical synthesis tool

Motivation for and overview of Newton

- Only a finite number of MEMS devices have utility
- MEMS process technologies slowly consolidating
- Library-based approach is fastest and draws closest analogy to circuit design automation and synthesis
- Need to develop highly accurate analytical models
- Need to develop extensible software framework to support multiple devices

Example analytical expression and computational algorithm

Clamped-clamped beam RF-MEMS resonator

- Mechanical beam clamped at each end and suspended over an electrode
- Beam designed to resonate at a distinct frequency
- Applications in frequency/clock synthesis and RF filtering
- Device fabricated with a surface micromachining process
- Process technology defines subset of variables
- Primary design objective is accurate prediction of resonant frequency

Slide 10 of 27

Mobius Microsystems

hius

Microsystems

Resonant modes

- Device can resonant in one of many modes (first and third shown)
- Resonant mode will be parameterized in analytical model

At resonance, CCB resonator can be modeled by a series RLC circuit

Use electromechanical analogy to determine device model parameters

Synthesize netlist for SPICE co-simulation with transistor devices

Microsystems

Euler-Bernoulli method

Begin with simple physicsbased analytical formulation

Account for "spring softening" due to subtractive electrical spring constant

Spring softening is nonuniform across beam

Use equivalent mass technique to derive accurate analytical expressions

Softening limited to electrode-beam overlap region

Synthesis engine variables

CCB resonator process and performance variables

Design variable	Туре	Description
ρ	Process	Density
E	Process	Young's Modulus
h _r	Process	Beam height
d_o	Process	Beam-electrode gap
k _n	Performance	Determine by mode
V _P	Performance	Bias voltage
W _r	Performance	Beam width
W _e	Performance	Electrode width
f_o	Performance	Resonant frequency
lide 14 of 27		Mobius Microsystems

Synthesis engine variables

CCB resonator constant and derived variables

Design variable	Value/Expression	Description
3	8.85x10 ⁻¹²	Permittivity of free space
A	$A = W_r h_r$	Beam cross-sectional area
I	$I = (1/12) W_r h_r^{3}$	Moment of inertia
<i>u</i> (<i>x</i>)	Determined by mode	Mode shape function
	Synthesized	Beam length
Slide 15 of 27		Mobius Microsystems

Tool framework

Framework overview

Graphical user interface

Slide 18 of 27

Graphical user interface

Physical design viewpoint

- Modify performance-independent parameters
- Export to CIF and generate netlist

Synthesis engine

Implemented in *Mathematica*

- Pros: useful for symbolic integrals in derived analytical expressions, fast, extensible, supports plotting
- Cons: requires license

Future work: integrate analytical expressions using a math and plotting package

- Pros: self-contained
- Cons: substantial effort

A synthesis example and experimental results

Synthesis example

Performance-Driven	Value
Resonant frequency, f_o	10MHz
Resonant mode number, n	1
Resonator width, W_r	6μ m
Bias voltage, V _P	10V
Electrode width, W _e	<i>L</i> /2
Process-Dependent	Value
Density , ρ	2330kg/m ³
Young's Modulus, <i>E</i>	150GPa
Resonator height, h_r	2 μm
Resonator-electrode gap, d _o	500Å

Slide 22 of 27

Experimental results

Electron micrograph of fabricated CCB resonator

- Surface micromachined poly-Si process at U. of Michigan
- Resonant frequency tested under vacuum with spectrum analyzer

Experimental results

FEA with Coventorware

- >10hrs. design/mesh + 15min. sim.
- **2.70%** error in f_o comp. to meas.

Meas. results from *Newton* design

- <1min. design and synthesis</p>
- 0.70% error in f_o comp. to target

Conclusion

Mobius Microsystems

Conclusion and future work

Achievements

- Demonstrated the first complete and extensible analytical CAD tool for the direct synthesis of MEMS devices
- Demonstrated rapid synthesis with high performance accuracy verified through measurement of fabricated devices (0.70% error)

Future work

- Verify accuracy of analytical formulations for larger sample sets
- Develop analytical formulations for new devices and verify through fabrication and test
- Automate process-dependent parameter selection based on standard foundries
- Integrate Mathematica notebooks into math package

Slide 26 of 27

Questions welcome

