Jitter Decomposition in Ring Oscillators

Qingqi Dou and Jacob A. Abraham

Computer Engineering Research Center Department of Electrical and Computer Engineering University of Texas at Austin

Overview

Proposed Method

▲ Time Lag Correlation

- ▲ Verification of the Theory
- ▲ Simulation in Ring Oscillator

Conclusions and Future Work

- Overview
- Proposed Method
 - ▲ Time Lag Correlation
 - ▲ Verification of the Theory
 - ▲ Simulation in Ring Oscillator
- Conclusions and Future Work

Needs for New Solutions

Continued demand for GHz processors and high-capacity communication systems

- ▲ Low-cost high volume ICs clocked at GHz rates and beyond
- Multi-Gb/s serial interfaces
 - ▼ PCI Express, Infiniband, Hyper Transport, Serial ATA

Challenges for testing the signal integrity of the system

- ▲ Direct measurement of *Bit Error Rate* (BER)
 - Unaffordable time
 - ▼ Expensive BERTester

Correlate BER with jitter

▼ Stringent timing specifications dictated by the serial link standards

Standards on Jitter Specifications (I)

New definition of jitter

Traditional histogram based peakto-peak jitter is replaced by jitter separation.

System specifications

▲ *Total Jitter* (TJ) @ given BER TJ (BER)=2*Q_{BER}* |RJ| +|DJ|

Weight factor vs. BER

$2*Q_{BER}$	BER
12.72	10-10
13.41	10-11
14.07	10-12
14.70	10-13
15.30	10-14
15.80	10-15
16.44	10-16
16.93	10-17

Standards on Jitter Specifications (II)

New jitter tolerance test

▲ A combination of certain DJ (including some SJ) and RJ is injected into the data stream.

Jitter Debug

Identifying dominant interferences limiting the signal integrity of system.

•Demand for jitter decomposition

Jitter specifications in infiniband

Specification	Infiniband		
Data Rate	2.5 Gb/s		
TX RJ	0.17 UI		
ТХ ТЈ	0.35 UI		
RX DJ	0.41 UI		
RX RJ			
RX SJ			
RX DJ+RJ			
RX TJ	0.70 UI		

1 Unit Interval (UI) = 1 bit period

The focus of this paper is

▲ Development of an efficient approach to separate jitter

Overview

- Proposed Method
 - ▲Time Lag Correlation
 - ▲ Verification of the Theory
 - ▲Simulation in Ring Oscillator
- Conclusions and Future Work

Jitter Definitions

 Jitter is defined as the deviation of a signal's timing event from its intended (ideal) occurrence in time

Three forms of jitter

▲ Cycle-to-cycle jitter

▲ Absolute jitter

▲ Cycle jitter

Classification of Jitter

Conventional Histogram-based Methods

Histogram-based methods

Extracts jitter based on the Probability Density Function (PDF) of jitter

Issues of the Histogram-based Methods

- Loses the info how the event involve in time
 - Fails to extract the info of time variables
- Fails to separate jitter in certain cases
 - More samples do not help

- RJ: RMS value = 5 ps
- SJ: PP value = 5*sqrt (2) ps f_m =100kHz vs. 100MHz

Methods for Jitter Decomposition

Histogram-based Methods

- Perfect for random variables
- ▲ Not suitable for time variables

Spectral Domain

- ▲ Precise in estimating the frequency of the SJs
- ▲ Not straightforward for dealing with jitter

Alternative?

▲ How to treat jitter as a time series?

Overview

Proposed Method

- ▲Time Lag Correlation
- ▲ Verification of the Theory
- ▲Simulation in Ring Oscillator
- Conclusions and Future Work

Proposed Technique for Jitter Separation (I)

Time Lag Correlation (TLC)

$$\Delta C_{j}(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (j_{n+m} * j_{n})$$

ARandom variable has zero TLC except its self-correlation.

Each component of jitter evolves differently with time.

Proposed Technique for Jitter Separation (II)

Features of TLC

Converges fast with sample size

▲ Mainly depends on the parameters of the variables

Verification of the Theory

ARatio of the TJ to UI

ARatio of the RMS value of RJ to the PP value of SJ, α

 \mathbf{A}_{m}^{f} of SJ vs. System Central Frequency, f_{0}

Down to 0.05 UI

Applicable to $\alpha = 1 \sim 20$ And ependent of the f_m frequency ranges and f₀

Simulation in Ring Oscillators (I)

Simulation in Ring Oscillators (II)

Simulation in Ring Oscillators (III)

Simulation Results

Injected	Golden Values			Proposed Method		
Sinusoid	f _m	PP	RMS	f _m	PP	RMS
Noise (mV)	(MHz)	(ps)	(ps)	(MHz)	(ps)	(ps)
2.5	100	21.5	2.5	99.4	21.2	3.5
1.25	100	11	2.5	97.2	10.1	3.4
2.5	200	25	2.5	164.8	24.7	3.5
1.25	200	12.5	2.5	161.8	11.9	3.4

Sample size = 1000

Histogram-based Method

Conclusions and Future Work

- An efficient technique for jitter decomposition is presented.
 - ▲ Able to extract the parameters of time variables
 - ▲ Able to separate jitter when histogram-based method fails
- Application of this technique to estimate the BER will be investigated.

Thanks

Any Questions?