Closed form solution for optimal buffer sizing

Sebastian Vogel Darmstadt University of Technology, Germany Martin D.F. Wong University of Illinois at Urbana-Champaign, USA

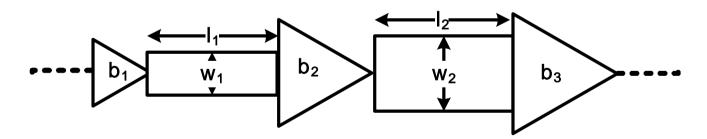
ASPDAC 2006 January 25, 2006

Outline

- Introduction
- Assumptions
- Recurrence relation
- Closed form solution
- Testing procedure and results
- Conclusion

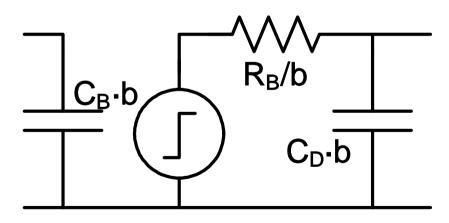
Some delay minimization techniques

- Wire sizing R_{D} f(x) f(x) C_{L}
- Buffer insertion



Buffer sizing

- Can also use buffers of different sizes
- Larger buffer has smaller output resistance, but represents larger capacitive load to previous wire segment
- Use a very simple buffer model (buffer of size b)

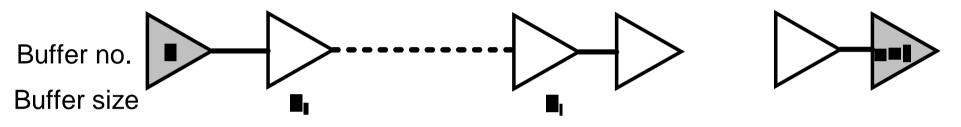


Model assumptions

- Single interconnection wire with fixed width
- No wire sizing allowed
- Elmore delay model
- Use model for wire segments
- Allow buffer sizing
- Number of buffers given
- Buffers are equally spaced along the wire
- Driver (resistance) and load (capacitance) are buffers of fixed size

Interconnect with buffers

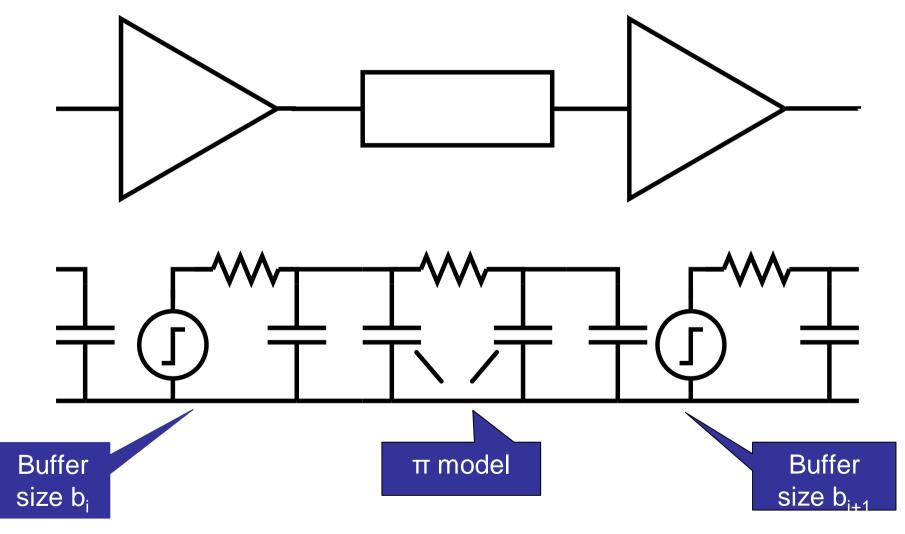
Source and sink buffers are given



Central question:

What are the optimal buffer sizes b_i to minimize the overall delay? Is there a closed form solution?

Equivalent circuit with buffers i and i+1



Calculate a recurrence relation

- Calculate Elmore delay ED_i between buffers i and i+1
- Elmore delay from source to sink is

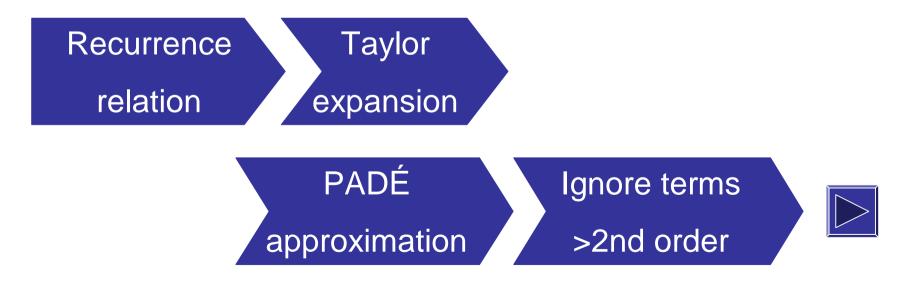
$$ED = \sum_{i=0}^{n} ED_{i}$$
$$\frac{\partial ED}{\partial b_{i}} = 0$$

Find optimal buffer size b_i by setting

$$b_{i} = \sqrt{\frac{b_{i+1} + \frac{C}{C_{B}(1+n)}}{b_{i-1}^{-1} + \frac{R}{R_{B}(1+n)}}} = \sqrt{\frac{b_{i+1} + \frac{\alpha}{(1+n)}}{b_{i-1}^{-1} + \frac{\beta}{(1+n)}}}$$
$$b_{0} = \lambda, \ b_{n+1} = \mu$$

Closed form solution I

- Want a function f(x) that gives optimal buffer size when being evaluated at position x.
- Source is at x=0 and sink is at x=1
- Has to match boundary conditions f(0)=ë and f(1)=µ



Closed form solution II

- Intermediate result
 - First order ordinary differential equation with two boundary conditions
 - c is integration constant, easy calculation

$$f'^2 = \left(\frac{df}{dx}\right)^2 = 2 \cdot n \cdot \beta \cdot f^3 + c \cdot f^2 + 2 \cdot n \cdot \alpha \cdot f$$

- ODE can be solved with Weierstrass elliptic function go
 - Important property:

$$\wp'(z)^2 = 4 \wp^3 - g_2 \wp(z) - g_3$$

Closed form solution III

Transformation of variables gives

$$f'(x)^2 = 4 f^3 - g_2 f(x) - g_3$$

- $g_2 = g_2(\alpha, \beta, c, n)$ $g_3 = g_3(\alpha, \beta, c, n)$ are real constants
- ODE can be solved by setting

$$f(x) = \mathcal{O}(x, g_2, g_3)$$

Closed form solution IV

- According to Weierstrass, the solution f(x) can be given in terms of ℘, ℘´.
- We denote $h(x) = 2\beta \cdot n \cdot x^3 + c \cdot x^2 + 2\alpha \cdot n \cdot x$

The closed form solution is given by

 $f(x) = \lambda + \frac{\sqrt{h(\lambda)} \wp'(x) + \frac{1}{2} h'(x) \left(\wp(x) - \frac{1}{24} h''(\lambda)\right) + \frac{1}{24} h(\lambda) h'''(\lambda)}{2 \left(\wp(x) - \frac{1}{24} h''(\lambda)\right)^2}$

Closed form solution V

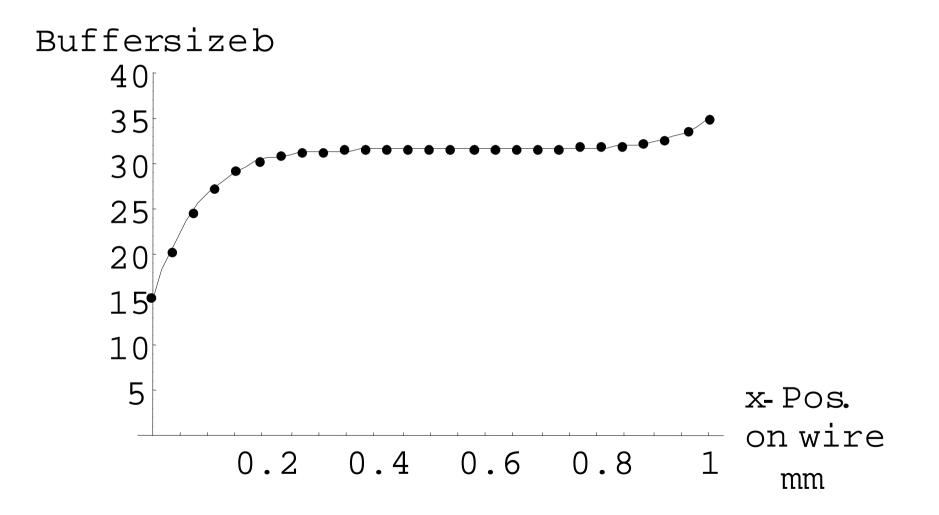
- Input:
 - Physical parameters of the wire (resistance, capacitance, geometrical dimensions)
 - Physical parameters of a unit size buffer (input capacitance, output resistance, intrinsic delay)
 - No. of buffers n
- Evaluate f(x) at equally spaced points to get optimal buffer size:

$$f(x) = f(x_i), x_i = \frac{i}{n+1}, 1 \le i \le n$$

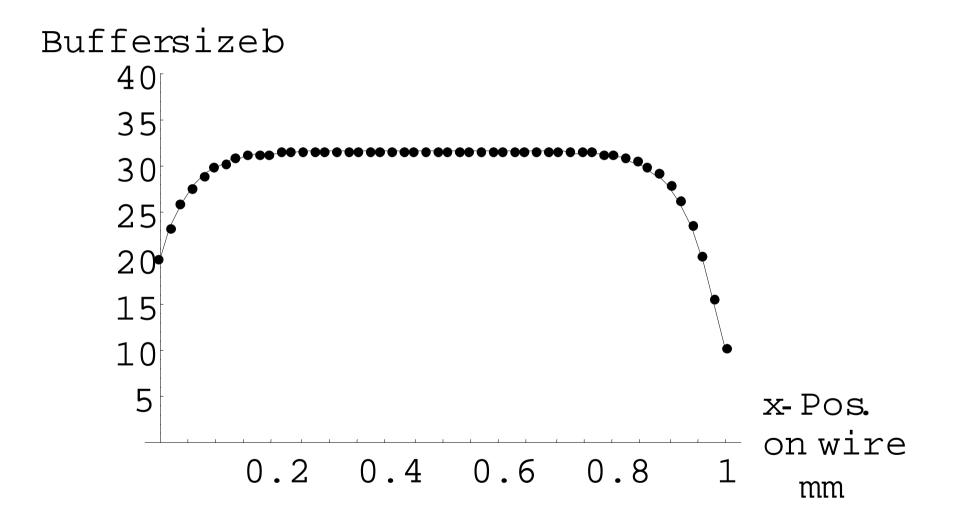
Testing procedure

- A) Iteratively
 - Fix every buffer size except buffer i
 - Apply recurrence relation, giving buffer size b_i as a function of b_{i-1} and b_{i+1}
 - Proceed to next buffer
 - Repeat until buffer sizes converge
- B) Use closed form solution
 - Weierstrass function available in Mathematica or Mathlab
- Calculate the Elmore delay for both sets of buffer sizes
 - Compare the relative difference

Example 1: 25 buffers



Example 2: 50 buffers



Results

- Achievements:
 - New closed form solution
 - Buffer sizes derived from closed form solution match those from the iterative method very well
 - Discrepancy diminishes as n increases
- Limitations:
 - Only line topology allowed
 - Equally spaced buffers does not consider obstacles

Conclusion

- Discussed the underlying model
- Derived recurrence relation
- Obtained a closed form solution in terms of Weierstrass elliptic function
- Discussed some results and consequences

Thank you for your attention!

Substitute to apply Weierstrass function

Start with

$$2\beta nf^3 + cf^2 + 2\alpha nt$$

Perform substitution $\hat{f} = \frac{2}{n\beta} f - \frac{c}{6n\beta}$

$$4 \hat{f}^{3} - \left(\frac{c^{2}}{12} - \alpha\beta n^{2}\right) \hat{f} - \left(\frac{1}{12}\alpha\beta n^{2}c - \frac{c^{3}}{216}\right)$$

$$g_{2}$$

$$g_{3}$$

Elliptic Integrals

Some apparently simple integrals have no simple solution.

$$I(x) = \int_{c}^{x} R(t, \sqrt{P(t)}) dt$$

- R(.) is a rational function of two arguments
- P is a polynomial of third or fourth degree
- c is a constant
- Such integrals are called elliptic integrals, can be solved with elliptic functions
 - Jacobi´s elliptic and theta functions
 - General theory: Weierstrass elliptic function

Elliptic Functions

- ω_1 and ω_2 are complex numbers (half-periods) generating a lattice Γ in the complex plain
- A function f is called doubly-periodic if it fulfills

$$f(z) = f(z + 2\omega_1) + f(z + 2\omega_2), \omega_1 \neq \omega_2, \forall z$$

- Elliptic functions are doubly-periodic functions with certain properties
- For each lattice Γ there is always a non-constant elliptic function \wp , the Weierstrass elliptic function, defined as

$$\wp(z) = \frac{1}{z^2} + \sum_{\gamma \in \Gamma \setminus \{0\}} \left(\frac{1}{(z - \gamma)^2} - \frac{1}{\gamma^2} \right)$$

ASPDAC 2006 - Closed form solution for optimal buffer sizing

Weierstrass elliptic function I

• Consequently, \wp has three arguments:

 $\mathcal{O}(\mathbf{Z}) = \mathcal{O}(\mathbf{Z}; \boldsymbol{\omega}_1, \boldsymbol{\omega}_2)$

Most important property for us:

$$\wp'(z)^2 = 4\wp^3 - g_2\wp(z) - g_3$$

- g_2 and g_3 are constants that depend on the half-periods ω_1 and ω_2 . They are called invariants.

Can also write $\wp(z) = \wp(z; g_2, g_3)$

It is always possible to construct appropriate half-periods ω_1 and ω_2 , given the invariants g_2 and g_3

Weierstrass elliptic function II

 For example, we can easily give the solution to this elliptic integral (here g₂ and g₃ are taken as constants)

$$u = \int_{y}^{\infty} \frac{ds}{\sqrt{4s^3 - g_2s - g_3}} \longrightarrow y = \wp(u; g_2, g_3)$$

- Proof: Integrate the Weierstrass differential equation
- There are (complicated) closed form solutions involving p and p ´ for other endpoints of the integral.

Continous version of the recurrence relation

Replace b_i by f(x_i)

$$f(x_{i})^{2} = \frac{f(x_{i+1}) + \frac{\alpha}{n+1}}{f(x_{i-1})^{-1} + \frac{\beta}{n+1}}$$

• Substitute
$$X_i = X, \Delta X = \frac{1}{n+1}$$

 $X_{i+1} = X + \Delta X, X_{i-1} = X - \Delta X$
 $\frac{1}{n} \cdot \frac{1}{n+1} \approx \Delta X^2$

Result

$$f(x)^{2} = \frac{f(x + \Delta x) + \Delta x^{2} n\alpha}{f(x - \Delta x)^{-1} + \Delta x^{2} n\beta}$$

Taylor expansion + Pade approximation

- Substitute $f(x) = e^{g(x)}$
- Perform Taylor expansion, result: rational function

$$f(x)^{2} = e^{2g(x)} = \frac{P(\Delta x)}{Q(\Delta x)} = A(\Delta x)$$

Compare coefficients to get

$$A(\Delta x) = a_0 + a_1 \Delta x + a_2 \Delta x^2 + O(\Delta x^3)$$

= $e^{2g(x)} (1 + \Delta x^2 (g' + \alpha n e^{-g} - \beta n e^g)) + O(\Delta x^3)$
= 0

A differential equation

- Drop terms of third order and higher
- Buffer sizing function must satisfy

f (x) =
$$e^{g(x)}$$
, x = $\frac{1}{n+1}$ $\forall i = 0,..., n+1$

g(x) is a solution to the second-order ODE

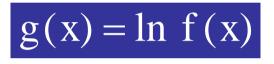
$$g' = \beta n e^g - \alpha n e^{-g}$$

with the boundary conditions

$$g(0) = \ln(\lambda), g(1) = \ln(\mu)$$

The ODE for buffer sizing function

- Apply chain rule of differentiation
- Undo previous substitution, e.g.



 Buffer sizing function is the solution to the following first order ODE with given boundary conditions

$$f'^2 = 2n\beta f^3 + cf^2 + 2n\alpha f$$

C can be determined numerically

