An O(nm) Time Algorithm for Optimal Buffer Insertion of m Sink Nets

Zhuo Li and Weiping Shi
\{zhuoli, wshi\}@ece.tamu.edu
Texas A\&M University
College Station, Texas 77845 USA

Outline

- Introduction
- $O(n)$ Time Algorithm for 2-pin Nets
- O(mn) Time Algorithm for m-pin Nets
- Experimental Results
- Conclusion

Introduction

- Buffer insertion and sizing is an effective method to reduce interconnect delay.
- With large number of nets and buffer positions, fast algorithms are crucial.

ASPDAC06

Technology node

Problem Formulation

- Given: A routing tree, possible buffer positions, sink capacitances and required arrival times (RAT), wire resistance and capacitance.
- Delay model: Elmore delay for interconnect and linear delay model for buffers.
b buffer types

n buffer positions

Maximum Slack Problem

- Find: Where to insert buffers so that the slack at the source $Q\left(\mathrm{~s}_{0}\right)$ is maximized.

$$
\mathrm{Q}\left(\mathrm{~s}_{0}\right)=\min _{\mathrm{i}>0}\left\{\operatorname{RAT}\left(\mathrm{~s}_{\mathrm{i}}\right)-\operatorname{delay}\left(\mathrm{s}_{0}, \mathrm{~s}_{\mathrm{i}}\right)\right\}
$$

without buffer, $\mathrm{Q}\left(\mathrm{S}_{0}\right)=-50 \mathrm{ps}$ with 2 buffers, $Q\left(\mathrm{~S}_{0}\right)=100 \mathrm{ps}$

Previous Research

- Maximum slack
- van Ginneken [ISCAS 90]: O(n²) time for one buffer type, where n is the number of buffer positions.
- Lillis, Cheng and Lin [TCAS 96]: $O\left(b^{2} n^{2}\right)$ time, where b is the number of buffer types.
- Shi and Li [TCAD 05]: O(b²nlogn) time.
- Li and Shi [TCAD 06]: O(bn²) time.
- Minimum cost (area, power, etc.)
- Lillis, Cheng and Lin [TCAS 96]: pseudopolynomial time algorithm.
- Shi, Li and Alpert [ASPDAC 04]: buffer cost minimization is NP-hard if b is a variable.

Sinks m and Buffer Positions n

- All previous research assumes m and n are same order.
- In practice, $\mathrm{m} \ll \mathrm{n}$
- In one IBM chip, 95% of the most timeconsuming nets have less than 5 sinks, while n is hundreds to thousands.
- In another IBM chip, 80\% of the most timeconsuming nets have less than 50 sinks.
- In this paper, we propose
- Simple algorithms and data structures.
- $O\left(b^{2} n\right.$) time for 2-pin nets. First linear time algorithm in terms of n
- $O\left(b m n+b^{2} n\right)$ time for m-pin nets.

Outline

- Introduction
- $O(n)$ Time Algorithm for 2-pin Nets
- O(mn) Time Algorithm for m-pin Nets
- Experimental Results
- Conclusion

O(n) Algorithm for 2-pin Nets

- Given a 2-pin net with n buffer positions, 1 buffer type, $R(w)$ and $C(w)$ for each wire, and sink non-redundant candidates ($\mathrm{Q}_{1}, \mathrm{C}_{1}$), $\ldots,\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$ in sorted order.
- Compute non-redundant candidates at source

Sink
candidates
$\left(Q_{1}, C_{1}\right)$,
$\left(Q_{2}, C_{2}\right)$,
$\left(Q_{n}, C_{n}\right)$

New View of Candidates

- Non-redundant candidates form a monotonically increasing sequence in (Q, C) plane.

Add C to All Candidates

- When we add capacitance to all candidates, they shift to right in the (Q, C) plane.

Subtract Q from All Candidates

- When we subtract Q from all candidates, they shift down in the (Q, C) plane.

Add R to All Candidates

- When we add resistance to all candidates, they move right and down in the (Q, C) plane.

Combined Effect of Add Wires

Slack

Observations:

1. Max Q moves to left
2. Right of Max Q redundant
3. Convex candidate useless

Convex Pruning

Slack

Convex Pruning

Slack

Linked List Data Structure

- Non-redundant and convex pruned
- In increasing Q and increasing C order
- We store slack and capacitance of each candidate implicitly
- Three global variables Qa, Ca and Ra that are updated as wires and buffers are added
- Each candidate also has (q, c) pair that are never updated

Less capacitance
Greater slack

(Q, C) Implicitly Stored

- Global variables that are updated
- Qa is accumulated wire delay
- Ca is accumulated wire capacitance, and
- Ra is accumulated wire resistance
- Each candidate also has ($\mathrm{q}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}$) that are not updated
- (Q, C) calculation
- Slack $Q_{i}=q_{i}-Q a-R a^{*} c_{i}$
- Capacitance $\mathrm{C}_{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}+\mathrm{Ca}$
- For example $(q, c)=(15,1),(19,2),(21,3)$
- If $\mathrm{Qa}=2, \mathrm{Ca}=1, \mathrm{Ra}=0$, then
(Q, C) are (15-2, 1+1), (19-2, 2+1), (21-2, 3+1)
- If $\mathrm{Qa}=0, \mathrm{Ca}=0, \mathrm{Ra}=1$, then
(Q, C) are (15-1*1, 1), (19-1*2, 2), (21-1*3, 3)

Add Wire

- For a wire of $R(w)$ and $C(w)$, we update (Q, C) values of all candidates in $\mathrm{O}(1)$ time, by updating only Qa, Ca and Ra :
- $\mathrm{Qa}=\mathrm{Qa}+\mathrm{R}(\mathrm{w})^{*} \mathrm{C}(\mathrm{w}) / 2+\mathrm{R}(\mathrm{w})^{*} \mathrm{Ca}$
- $\mathrm{Ca}=\mathrm{Ca}+\mathrm{C}(\mathrm{w})$
- $R a=R a+R(w)$
- For example $(q, c)=(15,1),(19,2),(21,3)$ and $\mathrm{Qa}=1, \mathrm{Ca}=1, \mathrm{Ra}=2$
- Add a wire $R(w)=2, C(w)=1$, then
- $\mathrm{Qa}=1+2^{*} 1 / 2+2^{*} 1=4$
- $\mathrm{Ca}=1+1=2$
- $R a=2+2=4$

Add Buffer

- Assume only one buffer type B for now. Let $R(B)$ be driver resistance, $C(B)$ be input capacitance, and $t(B)$ be intrinsic delay.
- Define the best candidate α as the candidate that maximizes slack among all candidates after B is inserted.
- Define the new candidate β as the candidate formed by α with the buffer B

$$
\begin{aligned}
& Q(\beta)=Q(\alpha)-R(B) C(\alpha)-t(B), \\
& C(\beta)=C(B) .
\end{aligned}
$$

Buffer delay

(Q, C) Plane View: Add Buffers

Form and Insert New Candidates

- All n best candidates can be found in $\mathrm{O}(\mathrm{n})$ time
- Best candidate index always moves to left
- Best candidates can be found by local search
- All n new candidate can be inserted into the data structure in $O(n)$ time
- Position of new candidate always moves to left
- To insert new candidate (Q, C) into the data structure, we set (q, c) values as

$$
\begin{aligned}
& q=Q+Q a+R a * C \\
& c=C-C a
\end{aligned}
$$

- It is now consistent with the implicit data structure

Algorithm for 2-Pin Nets

- Initia'

Total time O(n) - Total memory O(n)

- Rep
- For each wire w
- Update Qa, Ca and Ra

O(1)

- Prune redundant candidates at right, if any
- For each buffer position
- Search in decreasing Q order for the best candidate $O(n)$
- Form a new candidate $O(1)$
- Search in decreasing C order for the position of new candidate
- Insert new candidate $O(1)$ per del
- Perform local redundancy pruning and convex pruning

2-Pin Nets with b Buffer Types

- Total time $O\left(b^{2 n}\right)$ - riTotal memory O(bn)
- One pointer for best candidate, moves to left
- One pointer for new buffer position, moves to left
- Time complexity
- At most $O(b n)$ new candidates are inserted: $O(b n)$
- At most $O(b n)$ redundant candidates deleted: $O(b n)$
- At most $O(n)$ wires are added: $O(n)$
- Each of the $2 b$ pointers goes through the entire candidate list: $2 b^{*} O(b n)=O\left(b^{2} n\right)$

Outline

- Introduction
- $O(n)$ Time Algorithm for 2-pin Nets
- O(mn) Time Algorithm for m-pin Nets
- Experimental Results
- Conclusion

Multi-Pin Nets

- Convex pruning is not optimal under merging
- Non-convex candidates could generate optimal solution with candidates from other merging branch
- Solution: Two lists
- NR list for non-redundant candidates, for storing candidates
- CP list for convex pruned candidates, for generating new candidates

Algorithm for m-Pin Nets

Total time $O\left(b^{2} n+b m n\right)$ Total memory O(bn)

- For each 2-pin segment
- Apply 2-pin algorithm on CP list
- When add wire, add to both CP and NR
- When insert new candidate, insert to both CP and NR
- For each merging point
- Perform redundancy pruning for NR lists of two branches
- Perform van Ginneken style merging of two NR lists, and create a new CP list

Outline

- Introduction
- $O(n)$ Time Algorithm for 2-pin Nets
- O(mn) Time Algorithm for m-pin Nets
- Experimental Results
- Conclusion

Two-Pin Nets

Number of buffer types $=8$

Multi-Pin Nets (25 sinks)

Number of buffer types $=8$

Multi-Pin Nets (25 sinks)

Number of buffer positions $=2567$

Conclusion

- New algorithm for optimal buffer insertion
- O(b²n) for 2-pin nets
- O(bmn + b²n) for m-pin nets
- Theoretical innovations
- Simple data structure
- Fast new candidates generation
- Fast candidates insertion
- Practical applications
- Simple and robust
- Efficient on industrial test cases
- Extension to min cost buffer insertion and more general buffer delay models

m sinks and n buffer positions

- All previous algorithms assume m and n are of the same order.
- For most of nets in industrial applications, m is much less than n.
- Among 1000 most synthesis-time-consuming nets in one IBM ASIC chip, 95% nets with sinks less than 5 , and n is generally tens or hundreds times larger than m.
- In another chip, among 5000 most time-consuming nets, 80% nets with sinks less than 50.
- $\mathrm{O}(\mathrm{mn})$ algorithm:
- Two-pin nets: $O\left(b^{2} n\right)$ time.
- Multi-pin nets: $O\left(b^{2} n+b m n\right)$ time.
- Simple data structures.

The algorithm is linear respect to n. Add more buffer positions to improve timing.

