
An O(nm) Time Algorithm
for Optimal Buffer Insertion

of m Sink Nets
Zhuo Li and Weiping Shi

{zhuoli, wshi}@ece.tamu.edu
Texas A&M University

College Station, Texas 77845
USA

2ASPDAC06

Outline
• Introduction
• O(n) Time Algorithm for 2-pin Nets
• O(mn) Time Algorithm for m-pin Nets
• Experimental Results
• Conclusion

3ASPDAC06

• Buffer insertion and sizing is an effective
method to reduce interconnect delay.

• With large number of nets and buffer
positions, fast algorithms are crucial.

Introduction

0

10

20

30

40

50

60

70

80

90nm 65nm 45nm 32nm

Technology node

%
 c

el
ls

 th
at

 a
re

 b
uf

fe
rs c locked

unclocked

total

0

5

10

15

20

25

30

35

90nm 65nm 45nm 32nm

Technology node

%
 b

uf
fe

re
d

ne
ts

M3

M6

Saxena, et al.

[TCAD 2004]

4ASPDAC06

Problem Formulation
• Given: A routing tree, possible buffer positions,

sink capacitances and required arrival times (RAT),
wire resistance and capacitance.

• Delay model: Elmore delay for interconnect and
linear delay model for buffers.

s0

s1
s2

s3

s4

b buffer types

source

m sinks

n buffer positions

5ASPDAC06

Maximum Slack Problem
• Find: Where to insert buffers so that the

slack at the source Q(s0) is maximized.

)},()({min)(000 iii
ssdelaysRATsQ �

!

s0

s1

s3

s4

with 2 buffers, Q(S0)= 100 ps

s2

without buffer, Q(S0)= – 50 ps

6ASPDAC06

Previous Research
• Maximum slack

• van Ginneken [ISCAS 90]: O(n2) time for one
buffer type, where n is the number of buffer
positions.

• Lillis, Cheng and Lin [TCAS 96]: O(b2n2) time,
where b is the number of buffer types.

• Shi and Li [TCAD 05]: O(b2nlogn) time.
• Li and Shi [TCAD 06]: O(bn2) time.

• Minimum cost (area, power, etc.)
• Lillis, Cheng and Lin [TCAS 96]: pseudo-

polynomial time algorithm.
• Shi, Li and Alpert [ASPDAC 04]: buffer cost

minimization is NP-hard if b is a variable.

7ASPDAC06

Sinks m and Buffer Positions n
• All previous research assumes m and n are

same order.
• In practice, m << n

• In one IBM chip, 95% of the most time-
consuming nets have less than 5 sinks, while n
is hundreds to thousands.

• In another IBM chip, 80% of the most time-
consuming nets have less than 50 sinks.

• In this paper, we propose
• Simple algorithms and data structures.
• O(b2n) time for 2-pin nets. First linear time

algorithm in terms of n
• O(bmn+b2n) time for m-pin nets.

8ASPDAC06

Outline
• Introduction
• O(n) Time Algorithm for 2-pin Nets
• O(mn) Time Algorithm for m-pin Nets
• Experimental Results
• Conclusion

9ASPDAC06

O(n) Algorithm for 2-pin Nets
• Given a 2-pin net with n buffer positions, 1

buffer type, R(w) and C(w) for each wire,
and sink non-redundant candidates (Q1, C1),
…, (Qn, Cn) in sorted order.

• Compute non-redundant candidates at
source

s0

Sink
candidates
(Q1, C1),
(Q2, C2),
…
(Qn, Cn)

1 buffer type

source

n buffer positions

10ASPDAC06

New View of Candidates
• Non-redundant candidates form a monotonically

increasing sequence in (Q, C) plane.

0

5

10

15

20

25

0 2 4 6

Cap
C

Slack
Q

A1
(6, 1)

A2
(7, 2)

A3
(15, 3)

A4
(19, 4)

A5
(21, 5)

worse slack,
worse cap,
Redundant!

11ASPDAC06

Slack
Q

A3
(15, 3)

Add C to All Candidates
• When we add capacitance to all candidates, they

shift to right in the (Q, C) plane.

0

5

10

15

20

25

0 2 4 6

A1
(6, 1)

A2
(7, 2)

A4
(19, 4)

A5
(21, 5)

Add C=3

Cap
C

12ASPDAC06

Slack
Q

A3
(15, 3)

Subtract Q from All Candidates
• When we subtract Q from all candidates, they shift

down in the (Q, C) plane.

0

5

10

15

20

25

0 2 4 6

A1
(6, 1)

A2
(7, 2)

A4
(19, 4)

A5
(21, 5)

Subtract
Q=2

Cap
C

13ASPDAC06

Slack
Q

A3
(15, 3)

Add R to All Candidates
• When we add resistance to all candidates, they

move right and down in the (Q, C) plane.

0

5

10

15

20

25

0 2 4 6

A1
(6, 1)

A2
(7, 2)

A4
(19, 4)

A5
(21, 5)

A1
(5, 1)

A2
(5, 2)

A3
(12, 3)

A4
(15, 4)

A5
(16, 5)

Add R=1

Cap
C

14ASPDAC06

Slack
Q

Combined Effect of Add Wires

-5

0

5

10

15

20

25

0 2 4 6 8 10

Add wire with
R = 1, C = 1

Add wire with
R= 2, C= 2

Initial

Observations:
1. Max Q moves to left

3. Convex candidate useless

u
u
u

2. Right of Max Q redundant

u

u u
Cap
C

15ASPDAC06

Convex

Convex Pruning

A1

A2

A3

A4

A5

A convex candidate
can never give max
Q

0

5

10

15

20

25

0 2 4 6

Slack
Q

Cap
C

16ASPDAC06

Pruned

Convex Pruning

A1

A3

A4

A5 Convex pruning
can be done in
O(n) time.

Convex pruning
guarantees
optimality for 2-
pin nets

0

5

10

15

20

25

0 2 4 6

Slack
Q

Cap
C

17ASPDAC06

Linked List Data Structure
• Non-redundant and convex pruned
• In increasing Q and increasing C order
• We store slack and capacitance of each

candidate implicitly
• Three global variables Qa, Ca and Ra that are

updated as wires and buffers are added
• Each candidate also has (q, c) pair that are

never updated

(q2,c2)

Greater slackLess capacitance

(q1,c1) (q3,c3) (q4,c4) (q5,c5) (q6,c6)

18ASPDAC06

(Q, C) Implicitly Stored
• Global variables that are updated

• Qa is accumulated wire delay
• Ca is accumulated wire capacitance, and
• Ra is accumulated wire resistance

• Each candidate also has (qi, ci) that are not updated
• (Q, C) calculation

• Slack Qi = qi – Qa – Ra*ci

• Capacitance Ci = ci + Ca

• For example (q, c) = (15, 1), (19, 2), (21, 3)
• If Qa=2, Ca=1, Ra=0, then

(Q, C) are (15–2, 1+1), (19–2, 2+1), (21–2, 3+1)
• If Qa=0, Ca=0, Ra=1, then

(Q, C) are (15–1*1, 1), (19–1*2, 2), (21–1*3, 3)

19ASPDAC06

Add Wire
• For a wire of R(w) and C(w), we update (Q,

C) values of all candidates in O(1) time, by
updating only Qa, Ca and Ra:
• Qa = Qa + R(w)*C(w)/2 + R(w)*Ca
• Ca = Ca + C(w)
• Ra = Ra + R(w)

• For example (q, c) = (15, 1), (19, 2), (21, 3)
and Qa=1, Ca=1, Ra=2
• Add a wire R(w)=2, C(w)=1, then
• Qa = 1 + 2*1/2 + 2*1 = 4
• Ca = 1 + 1 = 2
• Ra = 2 + 2 = 4

20ASPDAC06

Buffer delay

• Assume only one buffer type B for now. Let
R(B) be driver resistance, C(B) be input
capacitance, and t(B) be intrinsic delay.

• Define the best candidate D as the
candidate that maximizes slack among all
candidates after B is inserted.

• Define the new candidate E as the candidate
formed by D with the buffer B

Q(E) = Q(D) – R(B)C(D) – t(B),
C(E) = C(B).

Add Buffer

21ASPDAC06

(Q, C) Plane View: Add Buffers

-5

0

5

10

15

20

25

0 2 4 6 8 10

Add wire with
R = 1, C = 1

Add wire with
R= 2, C= 2

Convex
prunedQ

C

Observations:
1. Best candidate

moves to left

C(B)

2. New buffer position
moves to left

22ASPDAC06

Form and Insert New Candidates
• All n best candidates can be found in O(n)

time
• Best candidate index always moves to left
• Best candidates can be found by local search

• All n new candidate can be inserted into the
data structure in O(n) time
• Position of new candidate always moves to left

• To insert new candidate (Q, C) into the data
structure, we set (q, c) values as

q = Q + Qa + Ra*C,
c = C – Ca

• It is now consistent with the implicit data
structure

23ASPDAC06

O(1) per
deletion

O(1)

Algorithm for 2-Pin Nets

total
O(n)

O(1)

O(1)
O(1)
per del

• Initial
• Store all sink candidates in increasing Q and C order
• Perform convex pruning for sink candidates
• Let Qa = Ca = Ra = 0

• Repeat the following, from sink to source:
• For each wire w

• Update Qa, Ca and Ra
• Prune redundant candidates at right, if any

• For each buffer position
• Search in decreasing Q order for the best candidate
• Form a new candidate
• Search in decreasing C order for the position of new

candidate
• Insert new candidate
• Perform local redundancy pruning and convex pruning

Total time O(n)
Total memory O(n)

24ASPDAC06

2-Pin Nets with b Buffer Types
• For each buffer type Bi

• Its best candidates always move to the left
• Positions of new candidates always move to the left

• Therefore, for each buffer type Bi, we use
• One pointer for best candidate, moves to left
• One pointer for new buffer position, moves to left

• Time complexity
• At most O(bn) new candidates are inserted: O(bn)
• At most O(bn) redundant candidates deleted: O(bn)
• At most O(n) wires are added: O(n)
• Each of the 2b pointers goes through the entire

candidate list: 2b*O(bn) = O(b2n)

Total time O(b2n)
Total memory O(bn)

25ASPDAC06

Outline
• Introduction
• O(n) Time Algorithm for 2-pin Nets
• O(mn) Time Algorithm for m-pin Nets
• Experimental Results
• Conclusion

26ASPDAC06

Multi-Pin Nets
• Convex pruning is not optimal under

merging
• Non-convex candidates could generate

optimal solution with candidates from
other merging branch

• Solution: Two lists
• NR list for non-redundant candidates, for

storing candidates
• CP list for convex pruned candidates, for

generating new candidates

27ASPDAC06 O(mbn)

O(b^2n)

• Initial
• For each sink s, create NR list and CP list, both

contain only one candidate (Q(s), C(s))
• Repeat the following, from sink to source:
• For each 2-pin segment

• Apply 2-pin algorithm on CP list
• When add wire, add to both CP and NR
• When insert new candidate, insert to both CP and

NR
• For each merging point

• Perform redundancy pruning for NR lists of two
branches

• Perform van Ginneken style merging of two NR lists,
and create a new CP list

Algorithm for m-Pin Nets

Total time O(b2n+bmn)
Total memory O(bn)

28ASPDAC06

Outline
• Introduction
• O(n) Time Algorithm for 2-pin Nets
• O(mn) Time Algorithm for m-pin Nets
• Experimental Results
• Conclusion

29ASPDAC06

Two-Pin Nets

0
5

10
15
20
25
30
35
40
45
50

Running
Time

404 2044 10404

Buffer Positions

New
O(b^2nlogn)
O(bn^2)
O(b^2n^2)

Number of buffer types = 8

30ASPDAC06

Multi-Pin Nets (25 sinks)

0

1

2

3

4

5

6

7

8

Running
Time

107 1337 2567

Buffer Positions

New
O(b^2nlog^2n)
O(bn^2)
O(b^2n^2)

Number of buffer types = 8

31ASPDAC06

Multi-Pin Nets (25 sinks)

0

0.5

1

1.5

2

2.5

3

Running
Time

1 4 8 16

Buffer Library Size

New
O(bn^2)

Number of buffer positions = 2567

32ASPDAC06

Conclusion
• New algorithm for optimal buffer insertion

• O(b2n) for 2-pin nets
• O(bmn + b2n) for m-pin nets

• Theoretical innovations
• Simple data structure
• Fast new candidates generation
• Fast candidates insertion

• Practical applications
• Simple and robust
• Efficient on industrial test cases

• Extension to min cost buffer insertion and
more general buffer delay models

33ASPDAC06

m sinks and n buffer positions
• All previous algorithms assume m and n are of the

same order.
• For most of nets in industrial applications, m is much

less than n.
• Among 1000 most synthesis-time-consuming nets in one IBM

ASIC chip, 95% nets with sinks less than 5, and n is generally
tens or hundreds times larger than m.

• In another chip, among 5000 most time-consuming nets, 80%
nets with sinks less than 50.

• O(mn) algorithm:
• Two-pin nets: O(b2n) time.
• Multi-pin nets: O(b2n + bmn) time.
• Simple data structures.

The algorithm is linear respect to n.
Add more buffer positions to improve timing.

