An O(nm) Time Algorithm for Optimal Buffer Insertion of m Sink Nets

Zhuo Li and Weiping Shi {zhuoli, wshi}@ece.tamu.edu Texas A&M University College Station, Texas 77845 USA

Outline

- Introduction
- O(n) Time Algorithm for 2-pin Nets
- O(mn) Time Algorithm for m-pin Nets
- Experimental Results
- Conclusion

Introduction

- Buffer insertion and sizing is an effective method to reduce interconnect delay.
- With large number of nets and buffer positions, fast algorithms are crucial.

Problem Formulation

- Given: A routing tree, possible buffer positions, sink capacitances and required arrival times (RAT), wire resistance and capacitance.
- Delay model: Elmore delay for interconnect and linear delay model for buffers.

Maximum Slack Problem

 Find: Where to insert buffers so that the slack at the source Q(s₀) is maximized.

$$Q(s_0) = \min_{i>0} \{RAT(s_i) - delay(s_0, s_i)\}$$

Previous Research

- Maximum slack
 - van Ginneken [ISCAS 90]: O(n²) time for one buffer type, where n is the number of buffer positions.
 - Lillis, Cheng and Lin [TCAS 96]: O(b²n²) time, where b is the number of buffer types.
 - Shi and Li [TCAD 05]: O(b²nlogn) time.
 - Li and Shi [TCAD 06]: O(bn²) time.
- Minimum cost (area, power, etc.)
 - Lillis, Cheng and Lin [TCAS 96]: pseudopolynomial time algorithm.
 - Shi, Li and Alpert [ASPDAC 04]: buffer cost minimization is NP-hard if b is a variable.

Sinks m and Buffer Positions n

- All previous research assumes m and n are same order.
- In practice, m << n
 - In one IBM chip, 95% of the most timeconsuming nets have less than 5 sinks, while n is hundreds to thousands.
 - In another IBM chip, 80% of the most timeconsuming nets have less than 50 sinks.
- In this paper, we propose
 - Simple algorithms and data structures.
 - O(b²n) time for 2-pin nets. First linear time algorithm in terms of n
 - O(bmn+b²n) time for m-pin nets.

Outline

- Introduction
- O(n) Time Algorithm for 2-pin Nets
- O(mn) Time Algorithm for m-pin Nets
- Experimental Results
- Conclusion

O(n) Algorithm for 2-pin Nets

- Given a 2-pin net with n buffer positions, 1 buffer type, R(w) and C(w) for each wire, and sink non-redundant candidates (Q₁, C₁), ..., (Q_n, C_n) in sorted order.
- Compute non-redundant candidates at source

New View of Candidates

• Non-redundant candidates form a monotonically increasing sequence in (Q, C) plane.

Add C to All Candidates

• When we add capacitance to all candidates, they shift to right in the (Q, C) plane.

Subtract Q from All Candidates

• When we subtract Q from all candidates, they shift down in the (Q, C) plane.

Add R to All Candidates

• When we add resistance to all candidates, they move right and down in the (Q, C) plane.

Combined Effect of Add Wires

Convex Pruning

Convex Pruning

ASPDAC06

Linked List Data Structure

- Non-redundant and convex pruned
- In increasing Q and increasing C order
- We store slack and capacitance of each candidate implicitly
 - Three global variables Qa, Ca and Ra that are updated as wires and buffers are added
 - Each candidate also has (q, c) pair that are never updated

(Q, C) Implicitly Stored

- Global variables that are updated
 - Qa is accumulated wire delay
 - Ca is accumulated wire capacitance, and
 - Ra is accumulated wire resistance
- Each candidate also has (q_i, c_i) that are not updated
- (Q, C) calculation
 - Slack $Q_i = q_i Qa Ra^*c_i$
 - Capacitance $C_i = c_i + Ca$
- For example (q, c) = (15, 1), (19, 2), (21, 3)
 - If Qa=2, Ca=1, Ra=0, then
 (Q, C) are (15–2, 1+1), (19–2, 2+1), (21–2, 3+1)
 - If Qa=0, Ca=0, Ra=1, then
 (Q, C) are (15–1*1, 1), (19–1*2, 2), (21–1*3, 3)

Add Wire

- For a wire of R(w) and C(w), we update (Q, C) values of all candidates in O(1) time, by updating only Qa, Ca and Ra:
 - Qa = Qa + R(w)*C(w)/2 + R(w)*Ca
 - Ca = Ca + C(w)
 - Ra = Ra + R(w)
- For example (q, c) = (15, 1), (19, 2), (21, 3) and Qa=1, Ca=1, Ra=2
 - Add a wire R(w)=2, C(w)=1, then
 - $Qa = 1 + \frac{2*1}{2} + \frac{2*1}{2} = 4$
 - Ca = 1 + 1 = 2
 - Ra = 2 + 2 = 4

Add Buffer

- Assume only one buffer type B for now. Let R(B) be driver resistance, C(B) be input capacitance, and t(B) be intrinsic delay.
- Define the best candidate α as the candidate that maximizes slack among all candidates after B is inserted.
- Define the new candidate β as the candidate formed by α with the buffer B

 $\begin{aligned} \mathsf{Q}(\beta) &= \mathsf{Q}(\alpha) - \mathsf{R}(\mathsf{B})\mathsf{C}(\alpha) - \mathsf{t}(\mathsf{B}), \\ \mathsf{C}(\beta) &= \mathsf{C}(\mathsf{B}). \end{aligned}$

Buffer delay

(Q, C) Plane View: Add Buffers

Observations:

- 1. Best candidate moves to left
- 2. New buffer position moves to left

Add wire with R= 2, C= 2 Add wire with R = 1, C = 1

Form and Insert New Candidates

- All n best candidates can be found in O(n) time
 - Best candidate index always moves to left
 - Best candidates can be found by local search
- All n new candidate can be inserted into the data structure in O(n) time
 - Position of new candidate always moves to left
- To insert new candidate (Q, C) into the data structure, we set (q, c) values as

 $q = Q + Qa + Ra^*C$,

c = C - Ca

 It is now consistent with the implicit data structure

Algorithm for 2-Pin Nets

• Initiati

•

- Total time O(n) ^{Jer}
- · Total memory O(n)
- For each wire w O(1) O(1) per
 - Update Qa, Ca and Ra
 - Prune redundant candidates at right, if any
- For each buffer position
 - Search in decreasing Q order for the best candidate O(n)
 - Form a new candidate O(1)
 - Search in decreasing C order for the position of new candidate
 O(1)
 - Insert new candidate O(1)
 per del
 - Perform local redundancy pruning and convex pruning

total

deletion

2-Pin Nets with b Buffer Types

Total time O(b²n) Total memory O(bn)

- One pointer for best candidate, moves to left
- One pointer for new buffer position, moves to left
- Time complexity
 - At most O(bn) new candidates are inserted: O(bn)
 - At most O(bn) redundant candidates deleted: O(bn)
 - At most O(n) wires are added: O(n)
 - Each of the 2b pointers goes through the entire candidate list: 2b*O(bn) = O(b²n)

Outline

- Introduction
- O(n) Time Algorithm for 2-pin Nets
- O(mn) Time Algorithm for m-pin Nets
- Experimental Results
- Conclusion

Multi-Pin Nets

- Convex pruning is not optimal under merging
 - Non-convex candidates could generate optimal solution with candidates from other merging branch
- Solution: Two lists
 - NR list for non-redundant candidates, for storing candidates
 - CP list for convex pruned candidates, for generating new candidates

Algorithm for m-Pin Nets

Total time O(b²n+bmn) Total memory O(bn)

- For each 2-pin segment
 - Apply 2-pin algorithm on CP list
 - When add wire, add to both CP and NR
 - When insert new candidate, insert to both CP and NR
- For each merging point
 - Perform redundancy pruning for NR lists of two branches
 - Perform van Ginneken style merging of two NR lists, and create a new CP list

ASPDAC06

0(mbn) 27

O(b^2n)

Outline

- Introduction
- O(n) Time Algorithm for 2-pin Nets
- O(mn) Time Algorithm for m-pin Nets
- Experimental Results
- Conclusion

Two-Pin Nets

Number of buffer types = 8

Buffer Positions

Multi-Pin Nets (25 sinks)

Number of buffer types = 8

Multi-Pin Nets (25 sinks)

Number of buffer positions = 2567

Conclusion

- New algorithm for optimal buffer insertion
 - O(b²n) for 2-pin nets
 - O(bmn + b²n) for m-pin nets
- Theoretical innovations
 - Simple data structure
 - Fast new candidates generation
 - Fast candidates insertion
- Practical applications
 - Simple and robust
 - Efficient on industrial test cases
- Extension to min cost buffer insertion and more general buffer delay models

m sinks and n buffer positions

- All previous algorithms assume m and n are of the same order.
- For most of nets in industrial applications, m is much less than n.
 - Among 1000 most synthesis-time-consuming nets in one IBM ASIC chip, 95% nets with sinks less than 5, and n is generally tens or hundreds times larger than m.
 - In another chip, among 5000 most time-consuming nets, 80% nets with sinks less than 50.
- O(mn) algorithm:
 - Two-pin nets: O(b²n) time.
 - Multi-pin nets: O(b²n + bmn) time.
 - Simple data structures.

The algorithm is linear respect to n. Add more buffer positions to improve timing.