Delay Defect Screening for a 2.16GHz SPARC64 Microprocessor

Noriyuki Ito, Akira Kanuma,

Daisuke Maruyama, Hitoshi Yamanaka, Tsuyoshi Mochizuki, Osamu Sugawara, Chihiro Endoh, Masahiro Yanagida, Takeshi Kono, Yutaka Isoda, Kazunobu Adachi, Takahisa Hiraide¹, Shigeru Nagasawa, Yaroku Sugiyama, Eizo Ninoi

Fujitsu Limited, ¹Fujitsu laboratory

FUJITSU

Outline

- Motivation
- Delay test economics
- Detection of multiple delay faults
- Screening results
- Coverage analysis
- Conclusions

Motivation

The importance of screening delay defects increases with smaller feature sizes and higher frequency.

The later a delay defect is found, the larger the manufacturing cost is.

Motivation (cont'd)

We must reduce delay defects found in the server production phase by screening based on a delay test at wafer-level.

Delay test economics

Results of delay test and system test are categorized as

follows:

		Delay test		
		Pass	Fail	
System test after packaging	Pass	Case A: Real pass No loss	Case C: Over-kill Loss	
	Fail	Case B: Under-kill Loss	Case D: Real fail No loss	

- Under-kill is due to the low coverage achieved for critical paths and the low frequency of the clock applied for the delay test.
- Over-kill is due to the excessive usage of test vectors that test functionally untestable path. – i.e. a path not activated by any combination of instructions in a microprocessor.

Over-kill and under-kill should be reduced as much as possible when a delay test is applied.

Delay test economics (cont'd)

When the case a delay test is not applied is compared with the case it is applied, the loss of the manufacturing cost is expressed as:

$$\Delta LMC = N_D \cdot (PC + STC) - (N_C \cdot UP + \sum_{i=1}^{N_i} N_i \cdot DTC)$$

waste of chips after packaging

waste of t=A,B,C,Dgood chips delay t

delay test cost

Pass

Fail

System

test after

packaging

Ni : the number of chips categorized into case i

PC : Packaging cost

STC : System test cost

UP : Unit price

DTC : Delay test Cost

• Applying the delay test is beneficial only if ΔLMC is positive.

Delay test

Fail

Case C:

Over-kill

Case D:

Real fail

Pass

Case A:

Real pass

Case B:

Under-kill

How is delay test performed?

A delay Test is performed by two at-speed clock pulses.
The second vector is set by functional justification.

2-pulse generator

- The 2-pulse extractor extracts two consecutive pulses from the PLL output.
- The selector selects the PLL output or the 2-pulse extractor output.

Detection of multiple delay faults

 A non-robust delay test is enough for screening.
In a non-robust test, a state of off-paths before launching a transition is don't care.

Detection of multiple delay faults (cont'd)

- As many transitions as possible are generated at latches on off-paths.
- Dynamic compaction is used to implement this.

Detection of multiple delay faults (cont'd)

By dynamic compaction technique, value 0 or 1 is assigned to off-path inputs at time t-1 to generate as many transitions as possible.

	On-path		Off-path					
			Our Method		Non- Robust		Robust	
Time frame	t-1	t	t-1	t	t-1	t	t-1	t
AND/NAND	0	1	A0	1	X	1	1	1
	1	0	X	1	X	1	1	1
OR/NOR	0	1	X	0	X	0	0	0
	1	0	A1	0	X	0	0	0

A0 (A1) means the value 0 (1) is selected if possible.

2.16GHz SPARC64 Microprocessor overview

Chip die image

Microprocessor profile

Process: 90nm, Cu metallization, 10 metal layers Frequency: 2.16GHz Die size: 18.46mm x 15.94mm Transistor count: 400M Level 2 on-chip cache: 4MB I/O signals count: 279 Power dissipation: less than 65W

DFT circuits

Scan clock: 2-phased clocks Scan chain count: 16 Scan latch count: 238,620 Additional circuits: TPCM, 2-pulse generator, RBIST

Delay test coverage

A robust test requires twice the number of test vectors and three times longer to reach the same coverage.

A robust test is not practical for screening delay defects.

Screening results

The screening ratio for the total actual defective chips is 5.0% when a delay test is applied as follows:

- Speed: 1.5GHz (70% of the target chip frequency)
- Voltage: the normal operating voltage
- # of tested chips: about 4,000

For the above good chips, we applied a delay test at a lower voltage. Then, regardless of the result, the system test is performed.

Paths covered by a delay test

Test vector verification flow

Verification by varying a strobe time

- If the simulated values of latches are different than the expected values, the applied vector tests a path slower than the frequency corresponding to the strobe time.
- We performed the verification several times using different values for the strobe times; we used frequencies both lower and higher than the target frequency.

Paths covered by a delay test (cont'd)

- Our delay test covers paths in each frequency to some extent.
- The coverage of critical paths should be improved.

Statistics of test generation and verification of tests

It took about 2 weeks to generate test vectors and to verify them including a delay test.

Generation (1 CPU is used in 1.3GHz UNIX server)

Test	# Faults	# Vectors	Coverage	Time (Hours)
SCAN	9,059,216	14	00.0%	0.22
FUNCTION	21,803,669	2,014	99.9%	14.15
RBIST	N/A	N/A	N/A	0.12
DELAY	9,750,387	3,103	90.0%	31.11

Verification (12 CPUs are used in 2.4GHz IA server)

Test	Verification (Hours)	Relative Verification Time	
SCAN	101.02	2.9%	
FUNCTION	16.80	0.5%	
RBIST	3,346.04	96.1%	
DELAY	16.24	0.5%	

Conclusions

Conclusions

- Our delay defect is successfully applied to 2.16GHz SPARC64 microprocessor for screening out delay defects.
 - The screening ratio for the total actual defective chips is 5.0% now.
 - About half of fails in system test will be detected by a delay test in advance if it is applied at a lower voltage.

Future work

To increase the coverage of critical paths, we are enhancing our delay test to cover more critical paths combined with path-base test.