

Delay Variation Tolerance for Domino Circuits

Kai-Chiang Wu, Cheng-Tao Hsieh, and Shih-Chieh Chang

National Tsing Hua University Hsinchu, Taiwan

VLSI/CAD Laboratory Department of Computer Science National Tsing Hua University

Outline

The delay variation problem in domino circuits

Duplex system

Re-synthesis for delay variation tolerance

Experimental results & conclusion

Delay Variation Problem

Circuit delay is increasingly sensitive to
 process variation
 delay defect
 noise effects (crosstalk and IR drop)

Cause a circuit's delay to fluctuate, and in the worst case, to violate timing requirement.

Delay Tolerance for Domino Circuits

High performance designs are normally susceptible to delay variation.

Domino circuits are usually adopted to implement high performance designs.

Important to develop delay variation tolerance for domino circuits.

Objectives

Slacks are normally used for area and power minimization -> no slacks available.

Objectives:

NOT timing optimization to increase slacks.
 Assume a circuit is well optimized for timing.

Add redundancy to increase slacks with very minor impact in timing.

Basic Idea

Add redundancy.

Function Not Changed

The on-set of the appended function is covered by that of the original function.

Slacks Increased (1/2)

When the critical path is activated, both the two circuits produce a rising transition.

Slacks Increased (2/2)

- The early transition must determine the circuit delay.
- The late transition does not affect the delay.

Slacks Increased (2/2)

For all input vectors activating the critical path, the appended circuit produces a 1.
 Slacks are increased.

Outline

The delay variation problem in domino circuits

Duplex system

Re-synthesis to tolerate delay variation

Experimental results & conclusion

A Duplex System

Has the same function.
Has larger delay variation tolerance.

Infinite Slack

All gates in the two blocks have infinite slacks.

Duplex System Impractical

In a duplex system, the slack is infinite.
 Over-protective for delay variation
 Delay variation is 10%~20% of the original circuit delay.

About 100% area overhead.

Outline

The delay variation problem in domino circuits

Duplex system

Re-synthesis to tolerate delay variation

Experimental results & conclusion

Wire Removal

- Remove redundant wires to reduce area overhead.
- Some wires are not redundant.

Redundant Wires

Lemma:

Input wires to OR gates in the appended circuit are redundant and can be removed simultaneously.

Slacks Decreased (1/2)

After removing redundant wires, some slacks may decrease.

Slacks Decreased (2/2)

Problem Formulation

Let the slacks of all gates at least a certain level.

Given a d_t value, we remove redundant wires keeping the slacks at least d_t.

Wire Removal Theorem

<u>Theorem</u>

For a domino circuit, a wire in the duplication circuit can be removed if its corresponding wire in the original circuit is

a d_t-side input wire,
 connected to an OR gate, and
 free from AND converging nodes in its transitive fanouts.

Outline

The delay variation problem in domino circuits

Duplex system

Re-synthesis to tolerate delay variation

Experimental results & conclusion

Experimental Flow

Optimize benchmarks by script.delay in SIS.

Re-synthesize circuits using
 TMR like structure [S.C. Chang, et al. DAC'04]
 Our duplex like structure

Set the slacks at least 10% * the circuit delay.

Experimental Results (d_t=10%)

Area overhead (%)

Statistical Analysis

Monte-Carlo experiments to demonstrate the effect of delay tolerance.

Assume gate delay is a probability density function as described in [Liou DAC'02].

Run Monte-Carlo to generate 1000 samples for both a circuit and its re-synthesized circuit.

Count the number of samples whose delay satisfies a pre-defined delay requirement.

Conclusion

Re-synthesize a given domino circuit for d_t delay tolerance.

12% area overhead for 10% delay tolerance.

Thank you!