IEEE Standard 1500 Based Interconnect Diagnosis for Delay and Crosstalk Faults

Katherine Shu-Min Li, Yao-Wen Chang*, Chauchin Su, Chung-Len Lee, and Jwu E Chen**

National Chiao Tung University, National Taiwan University*, National Central University**

Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Conclusion

Why Interconnect Testing and Diagnosis are Difficult?

- Complexity issue
 - Too many rings
 - Consider a bus-connected system
 - m cores, n bus lines
 - Assuming each core passed by a ring at most_once (a lower bound)

rings of length I from n buses (connecting i cores): C_i^n # all rings: $\sum_{i=2}^{\min(m,n)} C_i^m C_i^n \longrightarrow \text{Exponential !}$

Introduction (Cont'd)

- Interconnect dominates performance
 - Interconnect Diagnosis
- SoC Design Methodology
 - IEEE Std.1500 Based Interconnect Diagnosis
- Other Applications: PCB , MCM , SiP
- Interconnect Test
 - Goal
 - Interconnect Detection Problem=>Pass/Fail
 - Interconnect Diagnosis Problem=>Fault Location
 - Target Fault Models
 - Delay Fault
 - Crosstalk Glitch Fault
 - Traditional Stuck-at Fault, Open Fault
 - Oscillation Ring (OR) Based Test Scheme

Contribution of this Work

- Apply a heuristic algorithm to generate test rings quickly (R_t)
 - Previous Work on Oscillation Ring (OR) Based Interconnect Test Scheme for SOC
 ASPDAC 2005
- Provide a fast diagnosability check algorithm
 - Similar to fast fault simulation
- Provide a heuristic algorithm to generate extra diagnosis rings
 - Similar to IORD test pattern generation
- Present two optimization testing process
 - Concurrent OR
 - Adaptive OR

Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Conclusion

Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

- Oscillation Ring Test Scheme
 - Test Architecture
 - Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
 - Effectiveness
 - Delay Fault: longest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Crosstalk Glitch Fault: SoC simulation results
- Oscillation <u>Ring</u> Test Scheme for
 - Interconnect Detection Problem (IORT)
 - Interconnect Diagnosis Problem (IORD)

Test Architecture for Delay and Crosstalk Detection and Delay Measurement

Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

- Oscillation Ring Test Scheme
 - Test Architecture
 - Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
 - Effectiveness
 - Delay Fault: longest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Crosstalk Glitch Fault:
- Oscillation Ring Test Scheme for
 - Interconnect Detection Problem (ORT)
 - Interconnect <u>D</u>iagnosis Problem (ORD)

IEEE Std.1500 Wrapper Cell Design

Modified with force Inversion

Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

Oscillation Ring Test Scheme

- Test Architecture
- Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
- Effectiveness
 - Delay Fault:
 - Iongest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Delay Measurement
 - Crosstalk Glitch Fault:

Longest Test Ring in HP circuit

Simulated Waveforms of Longest and Shortest Test Rings of HP Circuit

Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

Oscillation Ring Test Scheme

- Test Architecture
- Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
- Effectiveness
 - Delay Fault:
 - Iongest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Delay Measurement
 - Crosstalk Glitch Fault:

$f_i = f \times \frac{n_i}{n} \qquad \begin{array}{l} \mbox{Let } f_i \mbox{ be 4 MHz to 400 MHz} \\ f_{in} = 4 \mbox{MHz}, f_{max} = 400 \mbox{MHz} \end{array})$

$$\begin{split} \epsilon &= \frac{1}{f_{\min} \times T_0} \leq \zeta \hspace{0.2cm} \xi \hspace{0.2cm} \text{be at least is 0.001} \\ &=> n_{\min} \geq 1000 \\ &=> T_0 \geq 250 \mu \text{s} \\ &=> T_0 = 250 \mu \text{s (OscTest Spec.)} \end{split}$$

Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

Oscillation Ring Test Scheme

- Test Architecture
- Enhanced IEEE Std.1500-Compliant Wrapper Cell Design
- Effectiveness
 - Delay Fault:
 - Iongest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Delay Measurement
 - Crosstalk Glitch Fault:
 - Iongest ring in HP circuit with 5 wrapper cells

Crosstalk Glitch Fault Detection – longest ring in HP with 5 wrapper cells

Crosstalk Glitch Detection (cont'd)

Modified Input Wrapper Cell for Crosstalk Glitch Faults

Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis

Oscillation Ring Test Scheme

- Test Architecture
- Effectiveness
 - Delay Fault: longest & shortest ring in HP circuit (f_{min} vs. f_{max})
 - Crosstalk Glitch Fault:
- Oscillation Ring Test Scheme for
 - Interconnect Detection Problem (IORT)
 - Interconnect <u>Diagnosis</u> Problem (IORD)

Oscillation Ring Test Scheme

- Single-Fault Assumption
- Interconnect Detection Problem (IORT)
 - Pass or Fail=>Edge-Covering Problem
 - Goal: Fault Detection on Test Rings
 - Interconnect Detection Model
- Interconnect <u>Diagnosis</u> Problem (IORD)
 - Fault Diagnosis=>Fault Location Problem
 - Goal: Optimal Resolution to Net Segment
 - Interconnect Diagnosis Model

An Example SOC Circuit for Interconnect Test

(a) Hypergraph of SoC Circuit with multiple-terminal nets

(b) Interconnect Test Modeling

Oscillation Ring Test Scheme

- Single-Fault Assumption
- Interconnect Detection Problem (IORT)
 - Pass or Fail=>Edge-Covering Problem
 - Goal: Faults on Test Rings
 - Interconnect Detection Model
- Interconnect <u>Diagnosis</u> Problem (IORD)
 - Fault Diagnosis=>Fault Location Problem
 - Goal: Optimal Resolution to Net Segment
 - Interconnect Diagnosis Model

Interconnect Detection Model

2-pin nets ($N_{11}=n_{11}+n_{12}$, $N_{12}=n_{11}+n_{13}$)

Oscillation Ring Test Scheme

- Single-Fault Assumption
- Interconnect Detection Problem (ORT)
 - Pass or Fail=>Edge-Covering Problem
 - Goal: Faults on Test Rings
 - Interconnect Detection Model
- Interconnect <u>Diagnosis</u> Problem (ORD)
 - Fault Diagnosis=>Fault Location Problem
 - Goal: Optimal Resolution to Net Segment
 - Interconnect Diagnosis Model

Interconnect Diagnosis Model

(a) Hypernet (b) Interconnect Diagnosis Model For Diagnosis: Every Edge Influences Different Rings=>Optimal Diagnosis Resolution is Edge

Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Concluding Remarks

Interconnect Diagnosis Algorithm

- Diagosability Conditions
- Heuristic Diagnosability Check
- Number of Tests
- Interconnect Diagnosis Algorithm
 - IORT (Interconnect Oscillation Ring Test)
 - IORD (Interconnect Oscillation Ring Diagnosis)

An Interconnect Diagnosis Graph Example to Show Diagosability Conditions

An Interconnect Diagnosis Graph Example $R_i \neq R_i = R_k$ |R_i|=4, distinguishable $R_{i} = \{r_{1}, r_{2}, r_{3}, r_{4}\}$ with $|R_i| = |R_k| = 5$ e r_5 \mathbf{r}_2 **r**₃ | \mathbf{r}_1 **r**₄ e_k R_i is distinguishable $R_{j} = R_{k} = \{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\}$ with R_i and R_k

(a) Hypergraph

(b) Interconnect Diagnosis Model =>Optimal Resolutation is Edge

An Illustrative Diagnosability Example

Matrices for the Heuristic Diagnosability Checking

Complexity for check: O(n²m)

Flow Chart of Diagnosability Checking

Interconnect Diagnosis Algorithm

- Diagosability Conditions
- Heuristic Diagnosability Check
- Number of Tests
- Interconnect Diagnosis Algorithm
 - IORT (Interconnect Oscillation Ring Test)
 - IORD (Interconnect Oscillation Ring Diagnosis)

Number of Tests

- IORT (|R_t|)
 - Lower Bound: 1
 - Upper Bound: n
- IORD (|R_d|)
 - Previous Example: n/2 distinct rings
 - N-bus Example: n-1 rings
 - Random Case: |R_d|=|R_t|+additional Diagnosis Rings predetermined rings

Theorem for Upper Bound of Predetermined Diganosis

- Assume:
 - m equivalence classes, whose sizes are s₁, s₂, ..., s_m, respectively.
 - The upper bound on the number of additional diagnosis rings "|R_d|-|R_t|" as theoretical results:

 $\sum_{i=1}^{m} (S_i - 1) = \sum_{i=1}^{m} S_i - m = \# NoDiag - \# EquClass$

An Illustrated Example of Predetermined Diganosis Ring Generation

Add r_4 to distinguish between e_3 and e_6 in Group of $|R_i|=2$ => Syndrome of e_3 and e_6 is different!

Interconnect Diagnosis Algorithm

- Interconnect Diagnosability Analysis
- Heuristic Diagnosability Check
- Number of Tests
- Interconnect Diagnosis Algorithm
 - IORT (Interconnect Oscillation Ring Test)
 - IORD (Interconnect Oscillation Ring Diagnosis)

Diagnosis Ring Generation Procedure

Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Concluding Remarks

Optimization Techniques for Interconnect Diagnosis

- Concurrent Diagnosis: under Worst Case
 Scenario
 - Scan Path Constraint
 - Shared Edge Constraint
- Adaptive Diagnosis (R_a)
 - Use almost same test cost with IORT (R_t) only to reduce test time efficiently

Scan Path Constraints

Concurrent Test Scan path conflict Shared edge conflict ′ **r_{2</mark>**} ۲₁ r₁ r₂ {e₄} ${e_4}$ {e₅} {e₅} {e₁ } {e₁ } {e₂} {e₂} (**r**4 (**r**₃ r₃ (a) Conflict Graph

(b) Graph coloring

Optimization Techniques for Interconnect Diagnosis

- Concurrent Diagnosis
 - Scan Path Constraint
 - Shared Edge Constraint
- Adaptive Diagnosis (R_a)
 - Construct adaptive diagnosis tree
 - Diagnosis cost
 - Best Case: Balanced adaptive tree
 - Worst Case: Skewed adaptive tree

Diagnosability Checking Matrix

Upper Bound of Adaptive Diagnosis

- |R_t|: the number of test rings for detection (IORT)
- L_h: the length of the longest test ring
- Best Case
 - If the tree is balanced, the minimum number of diagnosis patterns required is $\log(n+1)$
- Worst case for Skewed Adaptive Tree,
 - Apply |R_t| rings to find out that there is a faulty net, and
 - The last ring contains L_h net segments that are all passed by the ring only. It takes up to L_h-1 rings to distinguish these L_h possible faults, and thus the maximum number of diagnosis rings is |R_t|+ (L_h-1).

Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Conclusion

Experimental Results for Interconnect Diagnosis both for Predetermined and Adaptive Methods

Circuit	Statistics				Predetermined			Analysis			Adaptive			
	#c or e	#pa d	#hy p	#net_ seg.	R _t	R _d	R _d / R _t	#One Ring	#No Dia g	#Eq u Cla ss	R _d – R _t	max. EC	R _a	R _d / R _a
ac3	27	75	21 1	416	133 (33.3ms)	374 (93.5ms)	2.81	389	323	68	241	8	140 (35ms)	2.6 7
ami3 3	33	42	11 7	343	242 (60.5ms)	303 (75.8ms)	1.25	309	126	59	61	5	246 (61.5ms)	1.2 3
ami4 9	49	22	36 1	475	156 (39ms)	386 (96.5ms)	2.47	406	337	88	230	9	162 (40.5ms)	2.3 8
apte	9	73	92	136	73 (18.3ms)	122 (30.5ms)	1.67	127	94	40	49	4	76 (19ms)	1.6 1
hp	11	45	72	195	81 (20.3ms)	164 (41ms)	2.02	176	145	51	82	7	87 (21.8ms)	1.8 9
xerox	10	2	16 1	356	218 (54.5ms)	342 (85.5ms)	1.57	346	214	86	124	5	222 (55.5ms)	1.5 4
Com par.					0.9679								1	

Experimental Results – Concurrent Test Sessions

Circuit	R _d	R _c (worst case)	R _d - R _c	
ac3	374	373	1 (0.27%)	
ami33	303	290	17 (5.86%)	
ami49	386	352	34 (9.66%)	
apte	122	119	3 (2.52%)	
hp	164	160	4 (2.50%)	
xerox	342	327	15 (4.59%)	
Comparison	1.0432	1	4.57%	

Experimental Results – Comparison between Theoretical Bounds and Experimental Results

Circuit	#NoDi ag	#Eq uCla ss	(#NoDiag- #EquClass)	Extra Rings (R _d – R _t)	(#NoDiag- #EquClass) and (R _d – R _t)
ac3	323	68	255	241	14 (5.49%)
ami33	126	59	67	61	6 (8.96%)
ami49	337	88	249	230	19 (7.63%)
apte	94	40	50	49	1 (2.00%)
hp	145	51	94	82	12 (12.77%)
xerox	214	86	128	124	4 (3.13%)
Comparison			1.0712	1	6.64%

Outline

- Introduction
- Oscillation Ring Test Scheme for Interconnect Detection and Diagnosis
- Interconnect Diagnosis Algorithm
- Optimization Techniques for Interconnect Diagnosis
- Experimental Results
- Conclusion

Conclusion

- Present an Interconnect OR Test scheme for interconnect faults in SOC circuits
 - IORT scheme achieves 100% fault detection coverage for each net
 - IORD scheme achieves the maximum diagnosability for each net segment
- Present fast diagnosability check and diagnosis ring generation
 - with theoretical study and integrated them into the IORD algorithm
 - with difference around 6 or 7% between theoretical and experimental results

Conclusion (Cont'd)

- Two optimization techniques
 - Concurrent OR Test (R_c)
 - Under worst case scenario: average within 5% and up to 9.66%
 - Adaptive OR Test (R_a)
 - Improves by 1.23 X to 2.38 X compared with predetermined diagnosis R_d
 - with difference of predetermined detection IORT (R_t) by 3.21%

Thank you for your Kind Participation!