
High-Level Architecture
Exploration for MPEG4 Encoder

with Custom Parameters

Marius Bonaciu, , AimenAimen Bouchhima, Wassim Youssef, Bouchhima, Wassim Youssef,
Xi Chen, Wander Xi Chen, Wander CesarioCesario(*), Ahmed Jerraya(*), Ahmed Jerraya

TIMA Laboratory, SLS Group, Grenoble, FRANCE

MND, Paris, FRANCE (*)

Outline

� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

�� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

ASP-DAC’06MARIUS BONACIU

- 1 - ASP-DAC’06MARIUS BONACIU

MPEG4 Encoder Applications

� Many application domains Æ different configurations, architectures, constraints

- 2 - ASP-DAC’06MARIUS BONACIU

Solution Space for MPEG4
Architecture/Algorithm Exploration

� MPEG4 Algorithm Parameters
¾ Video resolution

¾ Frame_rate

¾ Bitrate

¾ MotionEstimation precision

¾ Motion Search Area

¾ Progressive/Interlaced

¾ Scene Change Detection

¾ Quantization range/type

¾…

� Architecture Parameters
¾ Number of CPUs

¾ Type of CPUs

¾ HW-SW partitioning

¾ Communication topology

¾ Arbitration type

¾ Message size

¾ Data width

¾ Data transfer latency

¾…

� Finding the optimal solution requires to explore between very large number of solutions

� Implementing the RTL architecture using wrong configurations might “kill” the project

- 3 - ASP-DAC’06MARIUS BONACIU

Classical Exploration Flow
Algorithm

Configurations

Algorithm
Specifications

Architecture
Specifications

Building
Algorithm/Architecture

Executable Model

Performance
Estimation

RTL Implementation

Change

Change

Not OK

OK

� Algorithm/Architecture Specifications

¾What can be changed:
• parallelism, pipelining
• mapping
• data organization
• communication

� Building the Algorithm/Arch. Executable Model
¾ Designing manually Æ fastidious, long time, errors
¾ Need re-designing a new Model for every

Algorithm/Architecture configurations change
¾ Simulation speed depends on the abstraction level

� Performance estimation precision
¾ Depends on the abstraction level
¾ Is a key issue, no matter the abstraction level

- 4 - ASP-DAC’06MARIUS BONACIU

Motivation and Objective

� Need to explore large solution space
¾ Automatic generation of Executable Algorithm/Architecture Model

• A unique Flexible Algorithm/Architecture Model of MPEG4 Encoder used to
obtain different Algorithm/Architecture Executable Models
Æ automatically customize the algorithm & build the abstract architecture

� Need of fast simulation
¾ Architecture Exploration at High-Level

• By ignoring many low-level architecture details, simulation becomes fast

� Need of precise simulation results
¾ High precision for the High-Level Architecture Exploration

¾ Precise estimations of the computation times
¾ Precise estimations of the communication times

- 5 - ASP-DAC’06MARIUS BONACIU

Contribution for High-Level Architecture Exploration

Flexible
Algorithm/

Architecture
Model of
MPEG4

Alg./ Arch.
parameters

Image size
Frames/sec
Quality
Bitrate
CPU number
CPU types
Clock speed
Comm. Type
…

Algorithm/ Architecture
Executable Model

Generation

(customized algorithm +
abstract architecture)

Virtual
Prototype

Co-simulation

NO YES

High-Level
Architecture
Exploration RTL

Implementation

Application
specific
MP-SoC

Satisfied
requirements?

� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

�� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

Outline

ASP-DAC’06MARIUS BONACIU

- 6 - ASP-DAC’06MARIUS BONACIU

MPEG4 Video Encoder Algorithm

quanta

VLC TaskMain DivX Task

Motion
Estimation

Motion
Comp.

DCT Quant.

DeQuant.

I

P VLC MPEG4/ISO
Bitstream

YUV
t

t-1
Intra

Prediction
IDCT

Image
Reconstruct

P

I

� Compress only the spatio-temporal differences between consecutive frames

� DivX = a popular algorithm implementation of the MPEG4 video
compression technology (ISO/IEC 14496-2)

- 7 - ASP-DAC’06MARIUS BONACIU

Algorithm Exploration

� Initial MPEG4 Encoder algorithm
¾ sequential algorithm
¾ requires a large amount of computation

� Initial Exploration Parameters
¾ Video resolution, Frame rate, Bitrate, MotionEstimation precision, Motion

Search Area, Progressive/Interlaced, Scene Change Detection, Quantization
range, Quantization type

¾ Insufficient for multi-processor implementation

� Need of adding parameters for multi-processor implementation
¾ Insert parallelism and pipeline support
¾ Modifying parallelism/pipeline level shouldn’t change the code, only the behavior

� Flexible MPEG4 Encoder algorithm
¾ Supports all the Initial Exploration Parameters, plus Parameters for the level of

Parallelism/Pipeline

- 8 - ASP-DAC’06MARIUS BONACIU

Flexible Parallel/Pipeline DivX Data Flow

Preprocessing PostprocessingMain DivX VLC
Adapt. YUV Processed MB Compressed MB MPEG4 bitstream

quanta

YUV

Video source MPEG4 storage

Splitter Combiner

Main DivX3
VLC

YUV

YU
V A

re
a1

Processed MB

Compressed MB MPEG4 bitstream
Main DivX2

Main DivX1

Main DivX4

YUV Area4

Proces
sed M

B

Area1Area1Area1 Area2Area2Area2

Area3Area3Area3 Area4Area4Area4

quanta

Video source MPEG4 storage

Splitter Combiner

Main DivX3

VLC

YU
V

Ar
ea

1

Processed M
B

Compressed MB

Main DivX2

Main DivX1

Main DivX4

Main DivX15

Main DivX14

Main DivX13

Main DivX16

YU
V Area16

Pr
oc

es
se

d
M

B

...

quanta

YUV

Video source

MPEG4 bitstream

MPEG4 storage

Splitter Combiner

Main DivX3

VLCm

YU
V

Ar
ea

1

Processed MB

Com
pressed MB

Main DivX2

Main DivX1

Main DivX4

Main DivX15

Main DivX14

Main DivX13

Main DivX16

YU
V Area16

Proces
sed M

B

VLC1

Com
pr

es
se

d
MB

...
...

quanta

YUV

Video source

MPEG4 bitstream

MPEG4 storage

SIMD SIMD

- 9 - ASP-DAC’06MARIUS BONACIU

Targeted Abstract Architecture with 2 SIMD

CPU Mem

Adapter

CPU Mem

Adapter

CPU Mem

Adapter

Explicit interconnect structure

API API

V
I
D
E
O

Splitter Combiner
M
P
E
G
4

CPU Mem

Adapter
CPU Mem

Adapter

CPU Mem

Adapter

CPU Mem

Adapter

CPU Mem

Adapter

MainDivX CPU Subsystem VLC CPU Subsystem

SIMD - MainDivX SIMD - VLC

� Targeted abstract architecture for MPEG4 encoder

� Flexible and Scalable Interconnect Structure

� Imposes some architecture configurations
¾Splitter and Combiner Æ IP
¾Number of tasks per CPU Æ 1

� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

�� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

Outline

ASP-DAC’06MARIUS BONACIU

- 10 - ASP-DAC’06MARIUS BONACIU

Flexible Algorithm/Architecture Model for MPEG4

MPI MPI MPIMPI

Splitter MainDivX VLC Combiner Storage

Abstract interconnect execution model (MPI-SystemC)
API

Video

MPI MPI

Task with flexible computations (belonging to a SIMD)
Fixed task

Task with flexible input/output (connected to a SIMD)

� Model described using macro language (i.e. Rive, M4)

� Tasks description language: C/C++

� Tasks encapsulated into SystemC modules

� Communication done using Message Passing primitives

� Communication infrastructure: MPI-SystemC High-Level Parallel Programming Model

- 11 - ASP-DAC’06MARIUS BONACIU

Tasks with Flexible Computations

MainDivX

//------------------ MainDivX task ---
EXTERN *image_memory“N” ,height“N” , length“N” , top_border“N” , left_border”N” ,

bottom_border“N” , right_border“N” ,&result“N” ;

void MainDivX”N” _MAIN ()
{

//initialization of computations
MainDivX”N” _INIT (&image_memory“N” , height”N” , length”N”);

//data_receive_communication from the Splitter
MPI_”PROTOCOL”Recv(this,&image_memory”N” ,sizeof(image_memory”N”),

”DATA_WIDTH” ,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX”N” _COMPUTE (&image_memory“N” ,height“N” , length“N” ,

top_border“N” , left_border”N” ,
bottom_border“N” , right_border“N” ,&result“N”);

//send_results_communication to the VLC
MPI_”PROTOCOL”Send(this,&result“N” ,sizeof(result“N”),”DATA_WIDTH” ,

VLC[“ target_vlc”]_ID,22, MPI_COMM_WORLD);
}

� Described using macro language

� As customizable as possible

� Represents a template description used later to generate multiple MainDivX tasks

- 12 - ASP-DAC’06MARIUS BONACIU

Communication Infrastructure: MPI-SystemC HLPPM

� Tasks communicate using Message Passing primitives

� MPI-SystemC High-Level Parallel Programming Model
¾ Similar with MPICH

¾ Implemented in SystemC

¾ Capable of time annotating the communication

¾ Splits a communication in 3 phases:
initialization, data transfer, release

MP_Init(*this,argc,argv);
MP_Finalize(*this);

MP_[I]Send(*this,buf,count,datatype,dest,tag,comm);
MP_[I]Recv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]BSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]BRecv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]SSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]SRecv(*this,buf,count,datatype,source,tag,comm,status);

MPI_Wait(*this,request,status);
MPI_Test(*this,request,flag,status);

Task CU TaskCUTransfer

Comm
request

Data
access

SystemC
channel

SystemC
process

- 13 - ASP-DAC’06MARIUS BONACIU

Executable SystemC Model of Combined Arch./Alg. [1/2]

MPIMPI

MPI

MPI

MPI

MPI

MPI

MPI

MPIMPI

MainDivX1

MainDivX2

MainDivX3

VLC1

VLC2

Combiner StorageSplitter

MPI–SystemC HLPPM
MPI

Video

MainDivX4

� Obtained after macro-generating the Flexible Algorithm/Architecture Model

� Different Configuration Parameters Æ Different Executable SystemC Models

� Executable model

� Un-timed model

� Used for algorithm debugging, synchronization debug, communication debug,
performance analysis

- 14 - ASP-DAC’06MARIUS BONACIU

Executable SystemC Model of Combined Arch./Alg. [2/2]

//------------------ MainDivX task ---
EXTERN *image_memory1,height1, length1, top_border1, left_border1,

bottom_border1, right_border1,&result1 ;

void MainDivX1_MAIN ()
{

//initialization of computations
MainDivX1_INIT (&image_memory1, height1, length1);

//data_receive_communication from the Spliter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX1_COMPUTE (&image_memory1,height1, length1,

top_border1, left_border1,
bottom_border1, right_border1,&result1);

//send_result_communication to the VLC
MPI_BSend(this,&result1,sizeof(result1),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}

MainDivX1

Macro-generated code for MainDivX1

- 15 - ASP-DAC’06MARIUS BONACIU

Timed Executable SystemC Model [1/2]
� Obtained after time annotating the computations and communication in the Executable
SystemC Model with Combined Algorithm/Architecture

//------------------ MainDivX task ---
EXTERN *image_memory1,height1, length1, top_border1, left_border1,

bottom_border1, right_border1,&result1 ;

void MainDivX1_MAIN ()
{

//initialization of computations
MainDivX1_INIT (&image_memory1, height1, length1);
WAIT(13.224);

//data_receive_communication from the Spliter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX1_COMPUTE (&image_memory1,height1, length1,

top_border1, left_border1,
bottom_border1, right_border1,&result1);

WAIT(2.312.564);

//send_result_communication to the VLC
MPI_BSend(this,&result1,sizeof(result1),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}

MainDivX1

- 16 - ASP-DAC’06MARIUS BONACIU

Timed Executable SystemC Model [2/2]

Communication time annotations
� Automatically integrated and managed by the MPI-SystemC HLPPM

� Splits every communication in 3 steps : initialization, transfer, release

� Time annotation for each step depends on the used MPI parameters

Computation time annotations
� Computation times depend on the type of CPU and are determined using an ISS
simulation

� Can be considered fixed computation times (an average) or variable computation
times read from a table file

� Annotation granularity vs. Work Effort

� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

�� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

Outline

ASP-DAC’06MARIUS BONACIU

- 17 - ASP-DAC’06MARIUS BONACIU

Detailed Representation of the Design Flow

Algorithm & Arch.
Parameters

Comm. time
tables

Expansion &
timing

annotations

Timed Executable
SystemC Model

Execution &
performance
estimations

Acceptable
solution?

No

Architecture
configuration file

Expansion
Abstract

Architecture

Communication
Network

Executable Model with Explicit
Network

HW-SW Interfaces
Architecture Refinement

RTL Architecture with
executable SW

Classical RTL design flow

MP-SoC chip

YesHigh-Level
Arch./Alg.

Exploration

Flexible Algorithm/
Architecture Model

for MPEG4

- 18 - ASP-DAC’06MARIUS BONACIU

Execution and Performance Estimations

� Executable Algorithm/Architecture Model
¾ generated automatically according to the chosen algorithm and architecture

configurations
¾ insert time annotations

� Executing the Executable Algorithm/Architecture Model
¾ SystemC compilation
¾ Execute
¾ Performance measured using sc_simulation_time() function after encoding
every frame

� Results representation
¾ Using graphic table for representing the performances measured during the

simulation
¾ Compare the obtained performances for different algorithm/architecture

configurations

- 19 - ASP-DAC’06MARIUS BONACIU

Performance Estimations: QCIF, 25fps, ARM7

QCIF using ARM7 (60MHz) processors

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

7.000.000

8.000.000
0 5 10 15 20

frame

cl
oc

k
cy

cl
es

1 MainDivX + 1 VLC
2 MainDivX + 1 VLC
4 MainDivX + 1 VLC
8 MainDivX + 1 VLC
16 MainDivX + 1VLC
32 MainDivX + 1 VLC
REAL TIME

- 20 - ASP-DAC’06MARIUS BONACIU

Performance Estimations: QCIF, 25fps, ARM9

QCIF using ARM9SE46- 4kI$,4kD$ (60MHz) processors

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3.500.000
0 5 10 15 20

frame

cl
oc

k
cy

cl
es 1 MainDivX + 1 VLC

2 MainDivX + 1 VLC
4 MainDivX + 1 VLC
8 MainDivX + 1 VLC
16MainDivX + 1 VLC
32 MainDivX + 1 VLC
REAL TIME

- 21 - ASP-DAC’06MARIUS BONACIU

Performance Estimations: CIF, 25fps, ARM7

CIF using ARM7 (60MHz) processors

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

30.000.000

0 5 10 15 20
frame

cl
oc

k
cy

cl
es

1MainDivX + 1 VLC
2 MainDivX + 2 VLC
4 MainDivX + 3 VLC
8 MainDivX + 3 VLC
12 MainDivX + 3 VLC
16 MainDivX + 3 VLC
20 MainDivX + 3 VLC
32 MainDivX + 3 VLC
REAL TIME

- 22 - ASP-DAC’06MARIUS BONACIU

Performance Estimations: CIF, 25fps, ARM9

CIF using ARM9SE46- 4kI$,4kD$ (60MHz) processors

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

0 5 10 15 20

frame

cl
oc

k
cy

cl
es

1 MainDivX + 1 VLC
2 MainDivX + 2 VLC
4 MainDivX + 2 VLC
8 MainDivX + 2 VLC
16 MainDivX + 2 VLC
32 MainDivX + 2 VLC
REAL TIME

- 23 - ASP-DAC’06MARIUS BONACIU

Architecture Exploration

Execution &
performance
estimations

OK?

Change
Configuration
Parameters No

Yes

Architecture
configuration file

Ready for RTL
implementation

CPUs Number Æ 5 (4 MainDivX + 1 VLC)
IPs Number Æ 2
Splitter Æ IP
MainDivX1 Æ CPU (ARM7)
MainDivX1 Æ 60MHz
MainDivX1 Æ no cache
… the same for the other 3 MainDivX
VLC1 Æ CPU (ARM7)
VLC1 Æ 60MHz
VLC1 Æ no cache
Combiner Æ IP
Splitter-MainDivX1 send protocol Æ Blocking
MainDivX1-Splitter recv. protocol Æ Non-Blocking
Splitter-MainDivX1 burst size Æ 128 bytes
Splitter-MainDivX1 data_width Æ 32 bits
Splitter-MainDivX1 init_latency Æ 2 cycles
Splitter-MainDivX1 data_latency Æ 3 cycles
MainDivX1-VLC1 send protocol Æ Blocking
VLC1-MainDivX1 recv. protocol Æ Blocking
VLC1 recv. arbitration Æ AnySource
MainDivX1-VLC1 burst size Æ 810 bytes
MainDivX1-VLC1 data_width Æ 32 bits
.... similar for the other modules

� Currently, all the decisions are done manually by the designer

- 24 - ASP-DAC’06MARIUS BONACIU

High-Level Estimation vs RTL Measurements

ms

115,02 123,53

0

20

40

60

80

100

120

140

Estimated (High-Level)
Measured (RTL)

7.39% error7.39% error

� High-Level Estimation = sufficient precision to assure its reliability

� Error caused by the impossibility to capture at High-Level:
¾ OS (scheduling, service calls, latencies induced by the API calls)

¾ Interconnect between the CPU buses and Network Interfaces Æ GRANT on bus

¾ HW/SW Wrappers

- 25 - ASP-DAC’06MARIUS BONACIU

Results Analysis

� Adaptation to other applications

¾ Flexible Algorithm/Architecture Model has to be remade.

¾ MPI-SystemC has to be readapted only in case new communication
topologies are required

� Proposed exploration at High-Level (i.e. for QCIF using ARM7)

¾ ~15 minutes were required to generate the Timed SystemC Model

¾ ~2 minutes were required to simulate 25 frames

¾ ~1 hour was required to find one architecture solution

� Exploration at RTL level for QCIF using ARM7

¾ ~6 months were required to build manually the RTL architecture
¾ ~25 hours were required to simulate 25 frames

¾ testing different architecture configuration at RTL level becomes unacceptable

Outline

� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

�� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration

� Flexible Algorithm and Architecture Representation

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

ASP-DAC’06MARIUS BONACIU

- 26 - ASP-DAC’06MARIUS BONACIU

Conclusions
• MPEG4 video encoder requires complex and long design time MP-SoC

implementations

• High-Level architecture exploration helps finding reliable architecture
configurations before the MP-SoC implementation starts

• A unique Flexible Algorithm/Architecture Model for MPEG4 Encoder were used
to automatically generate different Algorithm/Architecture Models required
during the exploration

• Time annotations were used to simulate the performances of computations and
communications running together

• Multiple configurations were experimented

• The High-Level performance estimations are close to the RTL performance
measurements

• The proposed approach drastically reduced the time to explore different
configurations of MPEG4 Encoder in MP-SoC

• This method can be extended to other applications

Thank you

MARIUS BONACIU
TIMA Laboratory, SLS Group

46 Avenue Félix Viallet, Grenoble, FRANCE

Tel : +33 4 76 57 43 34

Fax : +33 4 76 47 38 14

marius.bonaciu@imag.fr

Thank you

MARIUS BONACIU
TIMA Laboratory, SLS Group

46 Avenue Félix Viallet, Grenoble, FRANCE

Tel : +33 4 76 57 43 34

Fax : +33 4 76 47 38 14

marius.bonaciu@imag.fr

