
High-Level Architecture 
Exploration for MPEG4 Encoder 

with Custom Parameters

Marius Bonaciu, , AimenAimen Bouchhima, Wassim Youssef,   Bouchhima, Wassim Youssef,   
Xi Chen, Wander Xi Chen, Wander CesarioCesario(*), Ahmed Jerraya(*), Ahmed Jerraya

TIMA Laboratory, SLS Group, Grenoble, FRANCE

MND, Paris, FRANCE (*)



Outline

� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration 

� Flexible Algorithm and Architecture Representation 

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

�� Introduction to High-Level Architecture Exploration

� Flexible Architecture Model for Architecture Exploration 

� Flexible Algorithm and Architecture Representation 

� High-Level Architecture Exploration Flow for MPEG4 Encoder

� Conclusions

ASP-DAC’06MARIUS BONACIU



- 1 - ASP-DAC’06MARIUS BONACIU

MPEG4 Encoder Applications

� Many application domains Æ different configurations, architectures, constraints
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Solution Space for MPEG4 
Architecture/Algorithm Exploration

� MPEG4 Algorithm Parameters
¾ Video resolution

¾ Frame_rate

¾ Bitrate

¾ MotionEstimation precision

¾ Motion Search Area

¾ Progressive/Interlaced

¾ Scene Change Detection

¾ Quantization range/type

¾…

� Architecture Parameters
¾ Number of CPUs

¾ Type of CPUs

¾ HW-SW partitioning

¾ Communication topology

¾ Arbitration type

¾ Message size

¾ Data width

¾ Data transfer latency

¾…

� Finding the optimal solution requires to explore between very large number of solutions

� Implementing the RTL architecture using wrong configurations might “kill” the project
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� Algorithm/Architecture Specifications

¾What can be changed:
• parallelism, pipelining
• mapping
• data organization
• communication

� Building the Algorithm/Arch. Executable Model
¾ Designing manually Æ fastidious, long time, errors
¾ Need re-designing a new Model for every

Algorithm/Architecture configurations change
¾ Simulation speed depends on the abstraction level

� Performance estimation precision 
¾ Depends on the abstraction level
¾ Is a key issue, no matter the abstraction level
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Motivation and Objective

� Need to explore large solution space
¾ Automatic generation of Executable Algorithm/Architecture Model

• A unique Flexible Algorithm/Architecture Model of MPEG4 Encoder used to 
obtain different Algorithm/Architecture Executable Models 
Æ automatically customize the algorithm & build the abstract architecture

� Need of fast simulation
¾ Architecture Exploration at High-Level

• By ignoring many low-level architecture details, simulation becomes fast

� Need of precise simulation results
¾ High precision for the High-Level Architecture Exploration

¾ Precise estimations of the computation times
¾ Precise estimations of the communication times
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Contribution for High-Level Architecture Exploration
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MPEG4 Video Encoder Algorithm
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� Compress only the spatio-temporal differences between consecutive frames

� DivX = a popular algorithm implementation of the MPEG4 video
compression technology (ISO/IEC 14496-2)
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Algorithm Exploration

� Initial MPEG4 Encoder algorithm
¾ sequential algorithm
¾ requires a large amount of computation

� Initial Exploration Parameters
¾ Video resolution, Frame rate, Bitrate, MotionEstimation precision, Motion

Search Area, Progressive/Interlaced, Scene Change Detection, Quantization
range, Quantization type

¾ Insufficient for multi-processor implementation

� Need of adding parameters for multi-processor implementation
¾ Insert parallelism and pipeline support
¾ Modifying parallelism/pipeline level shouldn’t change the code, only the behavior

� Flexible MPEG4 Encoder algorithm  
¾ Supports all the Initial Exploration Parameters, plus Parameters for the level of

Parallelism/Pipeline
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Flexible Parallel/Pipeline DivX Data Flow
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Targeted Abstract Architecture with 2 SIMD
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� Targeted abstract architecture for MPEG4 encoder 

� Flexible and Scalable Interconnect Structure

� Imposes some architecture configurations
¾Splitter and Combiner Æ IP
¾Number of tasks per CPU Æ 1
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Flexible Algorithm/Architecture Model for MPEG4

MPI MPI MPIMPI

Splitter MainDivX VLC Combiner Storage

Abstract interconnect execution model (MPI-SystemC)
API

Video

MPI MPI

Task with flexible computations ( belonging to a SIMD)
Fixed task
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� Model described using macro language (i.e. Rive, M4)

� Tasks description language: C/C++

� Tasks encapsulated into SystemC modules

� Communication done using Message Passing primitives

� Communication infrastructure: MPI-SystemC High-Level Parallel Programming Model
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Tasks with Flexible Computations

MainDivX

//------------------ MainDivX task ---------------------------------------------
EXTERN *image_memory“N” ,height“N” , length“N” , top_border“N” , left_border”N” ,

bottom_border“N” , right_border“N” ,&result“N” ; 

void MainDivX”N” _MAIN ( )
{

//initialization of computations
MainDivX”N” _INIT (&image_memory“N” , height”N” , length”N” ); 

//data_receive_communication from the Splitter
MPI_”PROTOCOL”Recv(this,&image_memory”N” ,sizeof(image_memory”N” ),

”DATA_WIDTH” ,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX”N” _COMPUTE (&image_memory“N” ,height“N” , length“N” ,                      

top_border“N” , left_border”N” ,        
bottom_border“N” , right_border“N” ,&result“N” );

//send_results_communication to the VLC
MPI_”PROTOCOL”Send(this,&result“N” ,sizeof(result“N” ),”DATA_WIDTH” ,

VLC[“ target_vlc” ]_ID,22, MPI_COMM_WORLD);
}

� Described using macro language 

� As customizable as possible

� Represents a template description used later to generate multiple MainDivX tasks  
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Communication Infrastructure: MPI-SystemC HLPPM

� Tasks communicate using Message Passing primitives

� MPI-SystemC High-Level Parallel Programming Model
¾ Similar with MPICH

¾ Implemented in SystemC

¾ Capable of time annotating the communication

¾ Splits a communication in 3 phases:
initialization, data transfer, release

MP_Init(*this,argc,argv);
MP_Finalize(*this);

MP_[I]Send(*this,buf,count,datatype,dest,tag,comm);
MP_[I]Recv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]BSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]BRecv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]SSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]SRecv(*this,buf,count,datatype,source,tag,comm,status);

MPI_Wait(*this,request,status);
MPI_Test(*this,request,flag,status);

Task CU TaskCUTransfer

Comm 
request

Data 
access

SystemC 
channel

SystemC 
process
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Executable SystemC Model of Combined Arch./Alg. [1/2]
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� Obtained after macro-generating the Flexible Algorithm/Architecture Model

� Different Configuration Parameters Æ Different Executable SystemC Models

� Executable model

� Un-timed model

� Used for algorithm debugging, synchronization debug, communication debug,
performance analysis
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Executable SystemC Model of Combined Arch./Alg. [2/2]

//------------------ MainDivX task ---------------------------------------------
EXTERN *image_memory1,height1, length1, top_border1, left_border1,

bottom_border1, right_border1,&result1 ; 

void MainDivX1_MAIN ( )
{

//initialization of computations
MainDivX1_INIT (&image_memory1, height1, length1); 

//data_receive_communication from the Spliter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX1_COMPUTE (&image_memory1,height1, length1,                      

top_border1, left_border1,        
bottom_border1, right_border1,&result1);

//send_result_communication to the VLC
MPI_BSend(this,&result1,sizeof(result1),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}

MainDivX1

Macro-generated code for MainDivX1
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Timed Executable SystemC Model [1/2]
� Obtained after time annotating the computations and communication in the Executable 
SystemC Model with Combined Algorithm/Architecture

//------------------ MainDivX task ---------------------------------------------
EXTERN *image_memory1,height1, length1, top_border1, left_border1,

bottom_border1, right_border1,&result1 ; 

void MainDivX1_MAIN ( )
{

//initialization of computations
MainDivX1_INIT (&image_memory1, height1, length1);
WAIT(13.224);

//data_receive_communication from the Spliter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX1_COMPUTE (&image_memory1,height1, length1,          

top_border1, left_border1,        
bottom_border1, right_border1,&result1);

WAIT(2.312.564);

//send_result_communication to the VLC
MPI_BSend(this,&result1,sizeof(result1),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}

MainDivX1
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Timed Executable SystemC Model [2/2]

Communication time annotations
� Automatically integrated and managed by the MPI-SystemC HLPPM

� Splits every communication in 3 steps : initialization, transfer, release

� Time annotation for each step depends on the used MPI parameters

Computation time annotations
� Computation times depend on the type of CPU and are determined using an ISS 
simulation

� Can be considered fixed computation times (an average) or variable computation 
times read from a table file

� Annotation granularity vs. Work Effort
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Detailed Representation of the Design Flow
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Execution and Performance Estimations

� Executable Algorithm/Architecture Model
¾ generated automatically according to the chosen algorithm and architecture

configurations
¾ insert time annotations

� Executing the Executable Algorithm/Architecture Model
¾ SystemC compilation
¾ Execute
¾ Performance measured using sc_simulation_time() function after encoding 
every frame

� Results representation
¾ Using graphic table for representing the performances measured during the

simulation
¾ Compare the obtained performances for different algorithm/architecture

configurations
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Performance Estimations: QCIF, 25fps, ARM7

QCIF using ARM7 (60MHz) processors
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Performance Estimations: QCIF, 25fps, ARM9

QCIF using ARM9SE46- 4kI$,4kD$ (60MHz) processors
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Performance Estimations: CIF, 25fps, ARM7

CIF using ARM7 (60MHz) processors
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Performance Estimations: CIF, 25fps, ARM9

CIF using ARM9SE46- 4kI$,4kD$ (60MHz) processors
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Architecture Exploration

Execution & 
performance
estimations

OK?

Change 
Configuration 
Parameters No

Yes

Architecture 
configuration file

Ready for RTL 
implementation

CPUs Number  Æ 5 (4 MainDivX + 1 VLC)
IPs Number      Æ 2
Splitter             Æ IP
MainDivX1 Æ CPU (ARM7)
MainDivX1 Æ 60MHz
MainDivX1 Æ no cache
… the same for the other 3 MainDivX
VLC1 Æ CPU (ARM7)
VLC1 Æ 60MHz
VLC1 Æ no cache
Combiner         Æ IP
Splitter-MainDivX1 send protocol         Æ Blocking
MainDivX1-Splitter recv. protocol         Æ Non-Blocking
Splitter-MainDivX1 burst size               Æ 128 bytes
Splitter-MainDivX1 data_width Æ 32 bits
Splitter-MainDivX1 init_latency Æ 2 cycles
Splitter-MainDivX1 data_latency Æ 3 cycles
MainDivX1-VLC1 send protocol           Æ Blocking
VLC1-MainDivX1 recv. protocol           Æ Blocking
VLC1 recv. arbitration                         Æ AnySource 
MainDivX1-VLC1 burst size                 Æ 810 bytes
MainDivX1-VLC1 data_width Æ 32 bits
.... similar for the other modules

� Currently, all the decisions are done manually by the designer
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High-Level Estimation vs RTL Measurements
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� High-Level Estimation = sufficient precision to assure its reliability

� Error caused by the impossibility to capture at High-Level:
¾ OS (scheduling, service calls, latencies induced by the API calls)

¾ Interconnect between the CPU buses and Network Interfaces Æ GRANT on bus

¾ HW/SW Wrappers
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Results Analysis

� Adaptation to other applications

¾ Flexible Algorithm/Architecture Model has to be remade. 

¾ MPI-SystemC has to be readapted only in case new communication 
topologies are required

� Proposed exploration at High-Level (i.e. for QCIF using ARM7)

¾ ~15 minutes were required to generate the Timed SystemC Model 

¾ ~2 minutes were required to simulate 25 frames

¾ ~1 hour was required to find one architecture solution

� Exploration at RTL level for QCIF using ARM7

¾ ~6 months were required to build manually the RTL architecture
¾ ~25 hours were required to simulate 25 frames   

¾ testing different architecture configuration at RTL level becomes unacceptable  
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Conclusions
• MPEG4 video encoder requires complex and long design time MP-SoC 

implementations

• High-Level architecture exploration helps finding reliable architecture 
configurations before the MP-SoC implementation starts

• A unique Flexible Algorithm/Architecture Model for MPEG4 Encoder were used 
to automatically generate different Algorithm/Architecture Models required 
during the exploration

• Time annotations were used to simulate the performances of computations and 
communications running together

• Multiple configurations were experimented

• The High-Level performance estimations are close to the RTL performance 
measurements 

• The proposed approach drastically reduced the time to explore different 
configurations of MPEG4 Encoder in MP-SoC

• This method can be extended to other applications  
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