
High-Level Architecture
Exploration for MPEG4 Encoder

with Custom Parameters

Marius Bonaciu, , AimenAimen Bouchhima, Wassim Youssef, Bouchhima, Wassim Youssef,
Xi Chen, Wander Xi Chen, Wander CesarioCesario(*), Ahmed Jerraya(*), Ahmed Jerraya

TIMA Laboratory, SLS Group, Grenoble, FRANCE

MND, Paris, FRANCE (*)

Outline

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

ASP-DAC’06MARIUS BONACIU

- 1 - ASP-DAC’06MARIUS BONACIU

MPEG4 Encoder Applications

Many application domains different configurations, architectures, constraints

- 2 - ASP-DAC’06MARIUS BONACIU

Solution Space for MPEG4
Architecture/Algorithm Exploration

MPEG4 Algorithm Parameters
Video resolution

Frame_rate

Bitrate

MotionEstimation precision

Motion Search Area

Progressive/Interlaced

Scene Change Detection

Quantization range/type

…

Architecture Parameters
Number of CPUs

Type of CPUs

HW-SW partitioning

Communication topology

Arbitration type

Message size

Data width

Data transfer latency

…

Finding the optimal solution requires to explore between very large number of solutions

Implementing the RTL architecture using wrong configurations might “kill” the project

- 3 - ASP-DAC’06MARIUS BONACIU

Classical Exploration Flow
Algorithm

Configurations

Algorithm
Specifications

Architecture
Specifications

Building
Algorithm/Architecture

Executable Model

Performance
Estimation

RTL Implementation

Change

Change

Not OK

OK

Algorithm/Architecture Specifications

What can be changed:
• parallelism, pipelining
• mapping
• data organization
• communication

Building the Algorithm/Arch. Executable Model
Designing manually fastidious, long time, errors
Need re-designing a new Model for every
Algorithm/Architecture configurations change
Simulation speed depends on the abstraction level

Performance estimation precision
Depends on the abstraction level
Is a key issue, no matter the abstraction level

- 4 - ASP-DAC’06MARIUS BONACIU

Motivation and Objective

Need to explore large solution space
Automatic generation of Executable Algorithm/Architecture Model

• A unique Flexible Algorithm/Architecture Model of MPEG4 Encoder used to
obtain different Algorithm/Architecture Executable Models

automatically customize the algorithm & build the abstract architecture

Need of fast simulation
Architecture Exploration at High-Level

• By ignoring many low-level architecture details, simulation becomes fast

Need of precise simulation results
High precision for the High-Level Architecture Exploration

Precise estimations of the computation times
Precise estimations of the communication times

- 5 - ASP-DAC’06MARIUS BONACIU

Contribution for High-Level Architecture Exploration

Flexible
Algorithm/

Architecture
Model of
MPEG4

Alg./ Arch.
parameters

Image size
Frames/sec
Quality
Bitrate
CPU number
CPU types
Clock speed
Comm. Type
…

Algorithm/ Architecture
Executable Model

Generation

(customized algorithm +
abstract architecture)

Virtual
Prototype

Co-simulation

NO YES

High-Level
Architecture
Exploration RTL

Implementation

Application
specific
MP-SoC

Satisfied
requirements?

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

Outline

ASP-DAC’06MARIUS BONACIU

- 6 - ASP-DAC’06MARIUS BONACIU

MPEG4 Video Encoder Algorithm

quanta

VLC TaskMain DivX Task

Motion
Estimation

Motion
Comp.

DCT Quant.

DeQuant.

I

P VLC MPEG4/ISO
Bitstream

YUV
t

t-1
Intra

Prediction
IDCT

Image
Reconstruct

P

I

Compress only the spatio-temporal differences between consecutive frames

DivX = a popular algorithm implementation of the MPEG4 video
compression technology (ISO/IEC 14496-2)

- 7 - ASP-DAC’06MARIUS BONACIU

Algorithm Exploration

Initial MPEG4 Encoder algorithm
sequential algorithm
requires a large amount of computation

Initial Exploration Parameters
Video resolution, Frame rate, Bitrate, MotionEstimation precision, Motion
Search Area, Progressive/Interlaced, Scene Change Detection, Quantization
range, Quantization type
Insufficient for multi-processor implementation

Need of adding parameters for multi-processor implementation
Insert parallelism and pipeline support
Modifying parallelism/pipeline level shouldn’t change the code, only the behavior

Flexible MPEG4 Encoder algorithm
Supports all the Initial Exploration Parameters, plus Parameters for the level of
Parallelism/Pipeline

- 8 - ASP-DAC’06MARIUS BONACIU

Flexible Parallel/Pipeline DivX Data Flow

Preprocessing PostprocessingMain DivX VLC
Adapt. YUV Processed MB Compressed MB MPEG4 bitstream

quanta

YUV

Video source MPEG4 storage

Splitter Combiner

Main DivX3
VLC

YUV

YU
V A

re
a1

Processed MB

Compressed MB MPEG4 bitstream
Main DivX2

Main DivX1

Main DivX4

YUV Area4

Proces
sed M

B

Area1Area1Area1 Area2Area2Area2

Area3Area3Area3 Area4Area4Area4

quanta

Video source MPEG4 storage

Splitter Combiner

Main DivX3

VLC

YU
V

Ar
ea

1

Processed M
B

Compressed MB

Main DivX2

Main DivX1

Main DivX4

Main DivX15

Main DivX14

Main DivX13

Main DivX16

YU
V Area16

Pr
oc

es
se

d
M

B

...

quanta

YUV

Video source

MPEG4 bitstream

MPEG4 storage

Splitter Combiner

Main DivX3

VLCm

YU
V

Ar
ea

1

Processed MB

Com
pressed MB

Main DivX2

Main DivX1

Main DivX4

Main DivX15

Main DivX14

Main DivX13

Main DivX16

YU
V Area16

Proces
sed M

B

VLC1

Com
pr

es
se

d
MB

...
...

quanta

YUV

Video source

MPEG4 bitstream

MPEG4 storage

SIMD SIMD

- 9 - ASP-DAC’06MARIUS BONACIU

Targeted Abstract Architecture with 2 SIMD

CPU Mem

Adapter

CPU Mem

Adapter

CPU Mem

Adapter

Explicit interconnect structure

API API

V
I
D
E
O

Splitter Combiner
M
P
E
G
4

CPU Mem

Adapter
CPU Mem

Adapter

CPU Mem

Adapter

CPU Mem

Adapter

CPU Mem

Adapter

MainDivX CPU Subsystem VLC CPU Subsystem

SIMD - MainDivX SIMD - VLC

Targeted abstract architecture for MPEG4 encoder

Flexible and Scalable Interconnect Structure

Imposes some architecture configurations
Splitter and Combiner IP
Number of tasks per CPU 1

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

Outline

ASP-DAC’06MARIUS BONACIU

- 10 - ASP-DAC’06MARIUS BONACIU

Flexible Algorithm/Architecture Model for MPEG4

MPI MPI MPIMPI

Splitter MainDivX VLC Combiner Storage

Abstract interconnect execution model (MPI-SystemC)
API

Video

MPI MPI

Task with flexible computations (belonging to a SIMD)
Fixed task

Task with flexible input/output (connected to a SIMD)

Model described using macro language (i.e. Rive, M4)

Tasks description language: C/C++

Tasks encapsulated into SystemC modules

Communication done using Message Passing primitives

Communication infrastructure: MPI-SystemC High-Level Parallel Programming Model

- 11 - ASP-DAC’06MARIUS BONACIU

Tasks with Flexible Computations

MainDivX

//------------------ MainDivX task ---
EXTERN *image_memory“N” ,height“N” , length“N” , top_border“N” , left_border”N” ,

bottom_border“N” , right_border“N” ,&result“N” ;

void MainDivX”N” _MAIN ()
{

//initialization of computations
MainDivX”N” _INIT (&image_memory“N” , height”N” , length”N”);

//data_receive_communication from the Splitter
MPI_”PROTOCOL”Recv(this,&image_memory”N” ,sizeof(image_memory”N”),

”DATA_WIDTH” ,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX”N” _COMPUTE (&image_memory“N” ,height“N” , length“N” ,

top_border“N” , left_border”N” ,
bottom_border“N” , right_border“N” ,&result“N”);

//send_results_communication to the VLC
MPI_”PROTOCOL”Send(this,&result“N” ,sizeof(result“N”),”DATA_WIDTH” ,

VLC[“ target_vlc”]_ID,22, MPI_COMM_WORLD);
}

Described using macro language

As customizable as possible

Represents a template description used later to generate multiple MainDivX tasks

- 12 - ASP-DAC’06MARIUS BONACIU

Communication Infrastructure: MPI-SystemC HLPPM

Tasks communicate using Message Passing primitives

MPI-SystemC High-Level Parallel Programming Model
Similar with MPICH

Implemented in SystemC

Capable of time annotating the communication

Splits a communication in 3 phases:
initialization, data transfer, release

MP_Init(*this,argc,argv);
MP_Finalize(*this);

MP_[I]Send(*this,buf,count,datatype,dest,tag,comm);
MP_[I]Recv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]BSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]BRecv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]SSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]SRecv(*this,buf,count,datatype,source,tag,comm,status);

MPI_Wait(*this,request,status);
MPI_Test(*this,request,flag,status);

Task CU TaskCUTransfer

Comm
request

Data
access

SystemC
channel

SystemC
process

- 13 - ASP-DAC’06MARIUS BONACIU

Executable SystemC Model of Combined Arch./Alg. [1/2]

MPIMPI

MPI

MPI

MPI

MPI

MPI

MPI

MPIMPI

MainDivX1

MainDivX2

MainDivX3

VLC1

VLC2

Combiner StorageSplitter

MPI–SystemC HLPPM
MPI

Video

MainDivX4

Obtained after macro-generating the Flexible Algorithm/Architecture Model

Different Configuration Parameters Different Executable SystemC Models

Executable model

Un-timed model

Used for algorithm debugging, synchronization debug, communication debug,
performance analysis

- 14 - ASP-DAC’06MARIUS BONACIU

Executable SystemC Model of Combined Arch./Alg. [2/2]

//------------------ MainDivX task ---
EXTERN *image_memory1,height1, length1, top_border1, left_border1,

bottom_border1, right_border1,&result1 ;

void MainDivX1_MAIN ()
{

//initialization of computations
MainDivX1_INIT (&image_memory1, height1, length1);

//data_receive_communication from the Spliter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX1_COMPUTE (&image_memory1,height1, length1,

top_border1, left_border1,
bottom_border1, right_border1,&result1);

//send_result_communication to the VLC
MPI_BSend(this,&result1,sizeof(result1),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}

MainDivX1

Macro-generated code for MainDivX1

- 15 - ASP-DAC’06MARIUS BONACIU

Timed Executable SystemC Model [1/2]
Obtained after time annotating the computations and communication in the Executable

SystemC Model with Combined Algorithm/Architecture

//------------------ MainDivX task ---
EXTERN *image_memory1,height1, length1, top_border1, left_border1,

bottom_border1, right_border1,&result1 ;

void MainDivX1_MAIN ()
{

//initialization of computations
MainDivX1_INIT (&image_memory1, height1, length1);
WAIT(13.224);

//data_receive_communication from the Spliter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX1_COMPUTE (&image_memory1,height1, length1,

top_border1, left_border1,
bottom_border1, right_border1,&result1);

WAIT(2.312.564);

//send_result_communication to the VLC
MPI_BSend(this,&result1,sizeof(result1),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}

MainDivX1

- 16 - ASP-DAC’06MARIUS BONACIU

Timed Executable SystemC Model [2/2]

Communication time annotations
Automatically integrated and managed by the MPI-SystemC HLPPM

Splits every communication in 3 steps : initialization, transfer, release

Time annotation for each step depends on the used MPI parameters

Computation time annotations
Computation times depend on the type of CPU and are determined using an ISS

simulation

Can be considered fixed computation times (an average) or variable computation
times read from a table file

Annotation granularity vs. Work Effort

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

Outline

ASP-DAC’06MARIUS BONACIU

- 17 - ASP-DAC’06MARIUS BONACIU

Detailed Representation of the Design Flow

Algorithm & Arch.
Parameters

Comm. time
tables

Expansion &
timing

annotations

Timed Executable
SystemC Model

Execution &
performance
estimations

Acceptable
solution?

No

Architecture
configuration file

Expansion
Abstract

Architecture

Communication
Network

Executable Model with Explicit
Network

HW-SW Interfaces
Architecture Refinement

RTL Architecture with
executable SW

Classical RTL design flow

MP-SoC chip

YesHigh-Level
Arch./Alg.

Exploration

Flexible Algorithm/
Architecture Model

for MPEG4

- 18 - ASP-DAC’06MARIUS BONACIU

Execution and Performance Estimations

Executable Algorithm/Architecture Model
generated automatically according to the chosen algorithm and architecture
configurations
insert time annotations

Executing the Executable Algorithm/Architecture Model
SystemC compilation
Execute
Performance measured using sc_simulation_time() function after encoding

every frame

Results representation
Using graphic table for representing the performances measured during the
simulation
Compare the obtained performances for different algorithm/architecture
configurations

- 19 - ASP-DAC’06MARIUS BONACIU

Performance Estimations: QCIF, 25fps, ARM7

QCIF using ARM7 (60MHz) processors

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

7.000.000

8.000.000
0 5 10 15 20

frame

cl
oc

k
cy

cl
es

1 MainDivX + 1 VLC
2 MainDivX + 1 VLC
4 MainDivX + 1 VLC
8 MainDivX + 1 VLC
16 MainDivX + 1VLC
32 MainDivX + 1 VLC
REAL TIME

- 20 - ASP-DAC’06MARIUS BONACIU

Performance Estimations: QCIF, 25fps, ARM9

QCIF using ARM9SE46- 4kI$,4kD$ (60MHz) processors

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3.500.000
0 5 10 15 20

frame

cl
oc

k
cy

cl
es 1 MainDivX + 1 VLC

2 MainDivX + 1 VLC
4 MainDivX + 1 VLC
8 MainDivX + 1 VLC
16MainDivX + 1 VLC
32 MainDivX + 1 VLC
REAL TIME

- 21 - ASP-DAC’06MARIUS BONACIU

Performance Estimations: CIF, 25fps, ARM7

CIF using ARM7 (60MHz) processors

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

30.000.000

0 5 10 15 20
frame

cl
oc

k
cy

cl
es

1MainDivX + 1 VLC
2 MainDivX + 2 VLC
4 MainDivX + 3 VLC
8 MainDivX + 3 VLC
12 MainDivX + 3 VLC
16 MainDivX + 3 VLC
20 MainDivX + 3 VLC
32 MainDivX + 3 VLC
REAL TIME

- 22 - ASP-DAC’06MARIUS BONACIU

Performance Estimations: CIF, 25fps, ARM9

CIF using ARM9SE46- 4kI$,4kD$ (60MHz) processors

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

0 5 10 15 20

frame

cl
oc

k
cy

cl
es

1 MainDivX + 1 VLC
2 MainDivX + 2 VLC
4 MainDivX + 2 VLC
8 MainDivX + 2 VLC
16 MainDivX + 2 VLC
32 MainDivX + 2 VLC
REAL TIME

- 23 - ASP-DAC’06MARIUS BONACIU

Architecture Exploration

Execution &
performance
estimations

OK?

Change
Configuration
Parameters No

Yes

Architecture
configuration file

Ready for RTL
implementation

CPUs Number 5 (4 MainDivX + 1 VLC)
IPs Number 2
Splitter IP
MainDivX1 CPU (ARM7)
MainDivX1 60MHz
MainDivX1 no cache
… the same for the other 3 MainDivX
VLC1 CPU (ARM7)
VLC1 60MHz
VLC1 no cache
Combiner IP
Splitter-MainDivX1 send protocol Blocking
MainDivX1-Splitter recv. protocol Non-Blocking
Splitter-MainDivX1 burst size 128 bytes
Splitter-MainDivX1 data_width 32 bits
Splitter-MainDivX1 init_latency 2 cycles
Splitter-MainDivX1 data_latency 3 cycles
MainDivX1-VLC1 send protocol Blocking
VLC1-MainDivX1 recv. protocol Blocking
VLC1 recv. arbitration AnySource
MainDivX1-VLC1 burst size 810 bytes
MainDivX1-VLC1 data_width 32 bits
.... similar for the other modules

Currently, all the decisions are done manually by the designer

- 24 - ASP-DAC’06MARIUS BONACIU

High-Level Estimation vs RTL Measurements

ms

115,02 123,53

0

20

40

60

80

100

120

140

Estimated (High-Level)
Measured (RTL)

7.39% error7.39% error

High-Level Estimation = sufficient precision to assure its reliability

Error caused by the impossibility to capture at High-Level:
OS (scheduling, service calls, latencies induced by the API calls)

Interconnect between the CPU buses and Network Interfaces GRANT on bus

HW/SW Wrappers

- 25 - ASP-DAC’06MARIUS BONACIU

Results Analysis

Adaptation to other applications

Flexible Algorithm/Architecture Model has to be remade.

MPI-SystemC has to be readapted only in case new communication
topologies are required

Proposed exploration at High-Level (i.e. for QCIF using ARM7)

~15 minutes were required to generate the Timed SystemC Model

~2 minutes were required to simulate 25 frames

~1 hour was required to find one architecture solution

Exploration at RTL level for QCIF using ARM7

~6 months were required to build manually the RTL architecture
~25 hours were required to simulate 25 frames

testing different architecture configuration at RTL level becomes unacceptable

Outline

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

Introduction to High-Level Architecture Exploration

Flexible Architecture Model for Architecture Exploration

Flexible Algorithm and Architecture Representation

High-Level Architecture Exploration Flow for MPEG4 Encoder

Conclusions

ASP-DAC’06MARIUS BONACIU

- 26 - ASP-DAC’06MARIUS BONACIU

Conclusions
• MPEG4 video encoder requires complex and long design time MP-SoC

implementations

• High-Level architecture exploration helps finding reliable architecture
configurations before the MP-SoC implementation starts

• A unique Flexible Algorithm/Architecture Model for MPEG4 Encoder were used
to automatically generate different Algorithm/Architecture Models required
during the exploration

• Time annotations were used to simulate the performances of computations and
communications running together

• Multiple configurations were experimented

• The High-Level performance estimations are close to the RTL performance
measurements

• The proposed approach drastically reduced the time to explore different
configurations of MPEG4 Encoder in MP-SoC

• This method can be extended to other applications

Thank you

MARIUS BONACIU
TIMA Laboratory, SLS Group

46 Avenue Félix Viallet, Grenoble, FRANCE

Tel : +33 4 76 57 43 34

Fax : +33 4 76 47 38 14

marius.bonaciu@imag.fr

Thank you

MARIUS BONACIU
TIMA Laboratory, SLS Group

46 Avenue Félix Viallet, Grenoble, FRANCE

Tel : +33 4 76 57 43 34

Fax : +33 4 76 47 38 14

marius.bonaciu@imag.fr

