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3-D IC Technology Alternatives

interconnect

interconnect

*Block level integration
vertical pitch>5um
vertical density<40k/mm?

eChip level integration (3DMCM)
vertical interconnect pitch>50um
vertical interconnect density< 20/mm *Cell level integration

(400/mm?) RS =""" vertical pitch>200nm
BB R B vertical density<25M/mm?
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3D ICs and Microarchitecture

¢ 3D IC Benefits

» Reduction of Interconnect delay — increase of performance;
= Reduction of wirelength — reduction of capacitive power;

* Increase of integration density;

= Allow heterogeneous (logic, DRAM, RF, etc) integration

¢ 3D IC Concerns
= Thermal constraint
= Cost
¢ No existing flow to evaluate 3D implementations of
architectures systematically

»= Not clear how much wirelength gain can turn into performance
gain (in terms of BIPS)

» Thermal impact is not known
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Our Contribution: MEVA-3D

¢ An Automated Design Flow for 3D Architecture Evaluation (MEVA-
3D)

= Evaluate 3D implementations of micro-architectures systematically in terms of
both performance and thermal.

= Goal: build a of the 3D architecture

¢ MEVA-3D Flow

= Automated 2D/3D floorplanning;

* Reduce the latency along critical loops in the mico-architecture by considering
interconnect pipelining at a given target frequency.

= 3D routing and thermal optimization

= Performance Evaluation
* Cycle accurate architecture simulation on SPEC2000 benchmarks

= Thermal Evaluation
* Resistive network model considering white-space and thermal via insertion.
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Technology background

¢ Wafer bonding 3D IC technologies
= With flipping the top layer;
= Without flipping the top layer;

I Inter-layer

T T . 1 D EEEEEEEEEEE |pterconnect
I Tree S— S
Wafer 1 ﬁ" Device layer?
ez MLs1 —
Bounding - Layer-to-layer
Layer A bound
MLS‘? EEEEEE ! IEEE
Wafer 2 =
.1 . '“Q"“Er Device layer 1
pLz wafer
via
(@) With flipping the top layer (b) Without flipping the top layer

A 3D IC example with two device layers
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Overview of MEVA-3D

microarchitecture  target critical architectural power density
configuration frequency paths and sensitivity  estimates

2D/3D floorplanning for

performance and thermal with
interconnect pipelining

ESTIMATION

estimated performance, temperature,
and interconnect data

with interconnect latencies

U

power density with
interconnect consideration

performance simulation

VALIDATION

(' 2D/3D thermal simulation )

b

performance, power and
temperature
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Performance Model and Simulation Flow

CorelLibrary Target | nter connect Design Constraints:  Benchmarks
Frequency Architecture Area Power, Performance, etc.

'\

First Pass Smulation:
*Block power density estimation
L oop senditivity models

Block Power l Critical Paths with

Density Sensitivities

2D/3D Performance-driven Floorplan | P2P

*Pipeline estimation L atency —
Thermal estimation MC-sm: M u ticore

Performance Simulator

« Communication delay

based on communication thermal

) - = )
o P ar chitecture, p2p delay, simulation
: eré:;?rrr\]eacﬁonower nterconnect | queuing delay ...
power » Power = cores power +
estimation | inter connect power
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3D Thermal Model

¢ Thermal Resistive Network
[Wilkerson 2004]

= Device layer partitioned into tiles

| AV ayavd
= Tiles connected through thermal .
resistances ¢
e |
= Heat sources modeled as current w
sources Pq
: : P g.
Heat.smks of fixed temperatyre T, | 1) =
= TSvias at the center of the tile A\Y
RLatera . .
(a) Tiles Stack (b) Single Tile
Array Stack
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Microarchitecture Floorplanning with Wire Pipelining

¢ Microarchitecture Floorplanning

= Given:
* targetcycletime T,
* clocking overhead Toverhead

* [ist of blocks in the microarchitecture with their area, dimensions and
total logic delay

* set of critical microarchitectural paths with performance sensitivity
models for the paths

* average power density estimates for the blocks.

= Objective: Generate a floorplan which optimizes for the die area,
performance, and maximum on-chip temperature.
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3D floorplanner

< 3D thermal driven floorplan based on TCG representation
[Cong 2004]

= Multi-layer layout
= Thermal driven
= Performance evaluation

= Use simulated annealing with the cost function

1
el = UM & m + 1r % Area + un % T:"-'.H"i:ﬁ
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IPC Model and Performance Simulation

¢ Pipeline evaluation

» The performance of the micro-architecture in BIPS;

= |PC performance sensitivity model

* |PC of amicro-architecture depends on a set of critical processor loops;

* The information about IPC degradation degree due to extra latency along
the path [Sprangle 2002];

* Calculate the IPC degradation caused by the extra latency introduced by the
Interconnects in the layout;
¢ Performance simulation

= After physical design stage, We adapted the SimpleScalar 3.0 tool
set for our simulation framework;

= Provide feedback to the performance estimators in the

floorplanning stage;
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Thermal Optimization Using Though-the-silicon Vias

¢ Two types of TS vias

= Signal vias, part of the netlists

= Thermal vias, with no connections, introduced to reduce temperature

¢ After floorplanning, we can further reduce the temperature by
thermal via insertion.

= Decrease the maximum temperature by 50%

u ;;:;Saf:rn Via d
2 5 o/ i

Ruouting Layers

Blaock 4 | | Black 5 |

Hilicon {Device Lay ars)
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3D Routing and Thermal Via Planning for 3D ICs

¢ Simultaneous routing and thermal via planning method.
[Cong 2005]

= Multilevel routing and via planning framework

= Via planning during and after routing

(1Power Density Caleulation
(2§TS5-Via Position Estimation
(ApHeat Propa gat o

(dpRouting Resource Caleulaton

(1)Sigmal TS-Via Assignment
(2)TTS-Via Refinement by ADVE
(ATTS-Via Number Aodjustment
(4 Rowting Fefinement

(13 Power Demsity Coarsening level k
2y Routing Resonree Coarseming ! :
©) Heat Propagtion {ZjAD'l: P o level k

A) TTS-Via Number Adjustment
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Design Example

¢ An out-of-order superscalar processor micro-architecture with
4 banks of L2 cache in 70nm technology.

LU [ w TR [~
bl 38 g8 g1 -G
- s (B TE _ 2
- T Lol
Instruction Cache | 32K B, 32B/block, 2-way
Decode Width 4
ROB Size 128 entries
Issue Queune 32 entries
Issue Width 4 ALU ops, 2 MEM ops per cycle
Register File 70 INT and 70 FP

Functional Units | Units 2 IntALU, 1 FPALU, 1 IntMult, 1 FPMult
Load/Store Queune | 32 entries

L1Data Cache 16KB, 32B/block, 4-way, 2RW ports

Unified L2 cache | 1MB, 64B/block, 8-way
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Properties of Design Example
¢ The critical paths

Wakeup Latency | Latency to wakeup the dependent instruction
ALU Bypass | latency of the bypass wires between the ALUs
DLI Latency | Load latency though the L1 data cache

[.2 Latency | Latency for access to L2 cache
MPLAT | latency through the branch resolution path

¢Baseline processor parameters

2006-2-1

Instruction Cache

32KB, 32B/block, 2-way

Decode Width 3

ROB Size 128 entries

Issue Queue 32 entries

Issue Width 3

Register File 70 INT and 70 FP

Functional Units

Units 4 IntALU, 1 FPALU, 2 IntMult, 1 FPMult

Load/Store Queue

32 entries

L1Data Cache

16KB, 32B/block, 4-way, 2RW ports

Unified L2 cache

1MB, 64B/block, 8-way

UCLA VLSICAD LAB

19



3D Design Driver

¢ Alpha EV6-like core — 4GHz clock frequency

= Design Space Exploration without leveraging 3D for individual architectural blocks

2D EV6-like core
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Wakeup loop :
The extra cycle is
eliminated.

-
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3D EV6-like core (2 layers)
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The number of extra cycles for critical paths group

Freq(Hz) | 3G | 46 | 56 | 66 | 76 | 8G
2D(3D|2D|3D 2D |3D | 2D |3D| 2D | 3D | 2D | 3D
wakeup|1/0(1|1|1(1]1]02|1|2|1
ALU (0/0{1/0(0|0(0}]0]2(0]12/0
bLl (0j0(0}|0|1(0|2|1|1]|1|2]1
L2 |2(0(2|1(3|1|5|1|5|2|5]|1
MPLAT|1(0(1(0(2(1]|2|1|2|1|5]|2
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Performance for the micro-architecture with 2D and
3D layout at different target frequencies
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Maximum On-Chip Temperature

O 2D-Ho1 B 3[-H5]1 -no-via
95( L1 3D-H&1-Via [130-H5%
HS denotes a heat sink,
and the 3D integration
- 200 allows to insert thermal
vias to reduce the
temperature.
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Thermal Profiles for 2D chip(4Ghz)
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Temperature distribution in 2D integration.
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rhermal 3rof' es for 3D chip(4Ghz)
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Temperature distribution in 3D integration with one heat sink.
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Temperature distribution in 3D integration with two heat sinks and flipped upper layer.
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Conclusions

< 3D integration can eliminate most of the extra cycles incurred
by interconnects in 2D micro-processor designs.

¢ MEVA-3D can systematically evaluate the 3D architecture both
from the performance side and from the thermal side.

¢ By evaluating one Alpha-like out-of-order, superscalar
microprocessor, we show that 3D integration can improve the
performance by 10% with comparable maximum on- chip
temperature.
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On-going Research

¢ 3D Architecture Modeling and Exploration

= 3D layout can only reduce the global interconnect delay.
Additionally, the 3D implement of components can reduce internal
delay and power consumption;

= 3D area, performance and power models for key architectural
components including register files, caches and issue queues;

= Automated tool for microarchitectural and physical floorplanning
co-design to explore the use of 2D and/or 3D architecture blocks;

* Preliminary study shows 20% performance improvement over a
2D architecture.
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