Optimal Topology Exploration for Application-Specific 3D Architectures

O. Ozturk, F. Wang, M. Kandemir, and Y. Xie Pennsylvania State University

Outline

Introduction

- 3D Thermal Model
- ILP Formulation of Application-Specific 3D Placement
- An Example
- Experimental Evaluation
- Conclusion

Introduction

- 3D ICs: multiple device layers stacked together with direct vertical interconnects tunneling through them
- Advantages:
 - Reduction on global interconnect
 - Higher packing density and smaller footprint
 - Lower interconnect power due to reduction in total wiring length
 - Support for realization of mixed-technology chips

3D ICs

Thermal Issues:

- Higher cooling/packaging costs
- Acceleration of failure mechanisms
- Performance degradation.
- Thermal issues even more pronounced for 3D
 - Higher packing density
 - Especially for the inner layer of the die
 - A major hindrance for 3D integration
- 3D integration: Need to be a thermal-aware design

Chip Multiprocessors

Chip multiprocessor (CMP):

- AMD Opteron, IBM Power5 and Intel Yonah
- 2 cores now, soon will have 4, 8, 16, or 32
- Promising for embedded systems:
 - Performance: increasingly difficult to obtain more performance out of single-processor
 - Power consumption: lower frequency
 - Scalability: both loop-level and instruction-level parallelism
 - Cost: simpler design and verification
 - Area: better utilization of the available silicon area

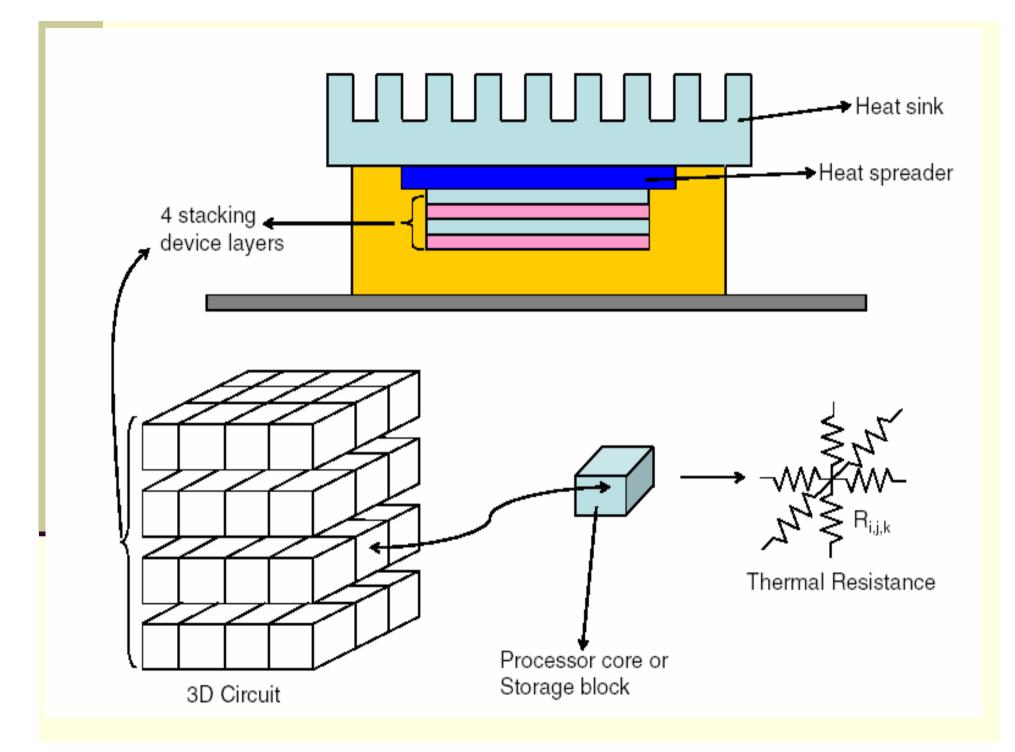
3D CMPs: Placement of processors and storage blocks

- Placement of processors and storage blocks
 - Determine the data communication distances
 - Both power and performance depend on data communication distances
 - Frequently accessed data storage blocks should be placed close to the processor
 - Data block shared between two processors should be put close to both

Application-specific Placement in a Customized 3D Design

- Application-specific
 - Each embedded application can require a different placement for achieving the minimum data communication distances
- Our approach:
 - Integer linear programming (ILP) based placement
 - Constraints: thermal bounds
 - Objective: minimize data communication distances

3D Thermal model


- An 3D resistor mesh model
 - Based on Skadron's Hotspot thermal model (lumped thermal resistances and thermal capacitances)
 - Employs thermal-electrical duality to enable effcient computation of thermal effects at the functional block level
- Transfer thermal resistance R_{i,j} of block i with respect to block i

block j

$$R_{i,j} = \frac{\Delta T_{i,j}}{\Delta P_{i,j}}.$$

Temperature rise for each block

$$T = R \times P$$

ILP Formulation of Application-Specific 3D Placement

- Problem: Minimize data communication cost of a given application by determining the optimal placement of storage blocks and processor cores under a temperature bound
- A storage block corresponds to a set of consecutive cache lines
 - Data cache assumed to be divided into storage blocks of equal size
- In ILP formulation, we view the chip area as a 3D grid and assign processor cores and storage blocks into this grid

ILP Formulation

- ILP provides a set of techniques that solve optimization problems:
 - Objective function and constraints are linear functions
 - Solution variables restricted to be integers.
- In 0-1 ILP
 - Each (solution) variable is restricted to be 0 or 1.
- 0-1 ILP is used in this work for determining:
 - Storage block placements
 - Processor core placements
 - Under temperature bounds

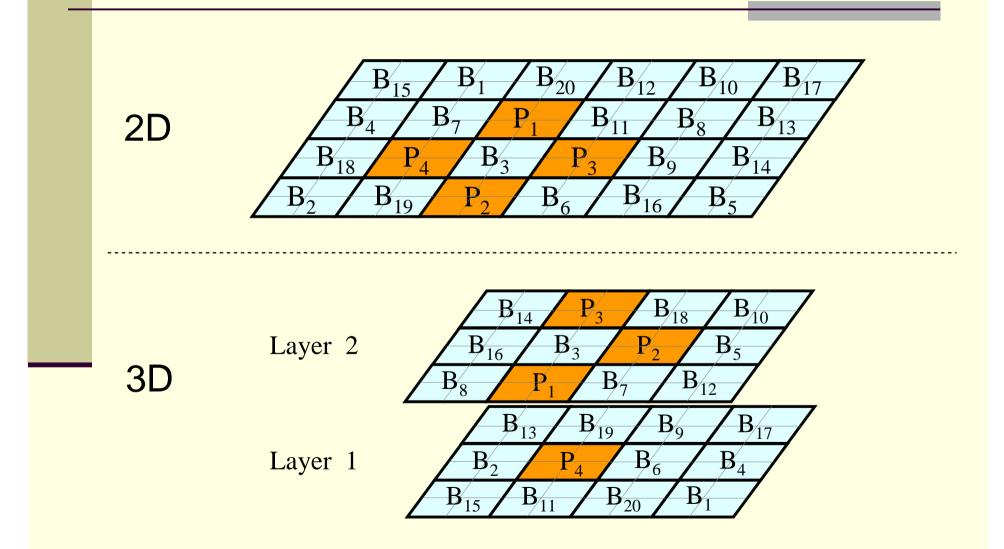
ILP Formulation of Application-Specific 3D Placement

Constant terms definition

Constant	Definition			
P	Number of processor cores			
M	Number of storage blocks			
C_X, C_Y, C_Z	Dimensions of the chip			
P_X, P_Y	Dimensions of a processor core			
$SIZE_m$	Size of a storage block m			
$FREQ_{p,m}$	Number of accesses to storage block m by processor p			
$R_{l,v}$	Thermal resistance network			
T_B	Temperature bound			

Xdist_{p,m,x}: indicates whether the distance between processor p and sotrage block m is equal to x on the x-axis

$$X_{Cost} = \sum_{i=1}^{P} \sum_{j=1}^{M} \sum_{k=1}^{C_X-1} FREQ_{i,j} \times Xdist_{i,j,k} \times k.$$
$$Y_{Cost} = \sum_{i=1}^{P} \sum_{j=1}^{M} \sum_{k=1}^{C_Y-1} FREQ_{i,j} \times Ydist_{i,j,k} \times k.$$
$$Z_{Cost} = \sum_{i=1}^{P} \sum_{j=1}^{M} \sum_{k=1}^{C_Z-1} FREQ_{i,j} \times Zdist_{i,j,k} \times k.$$

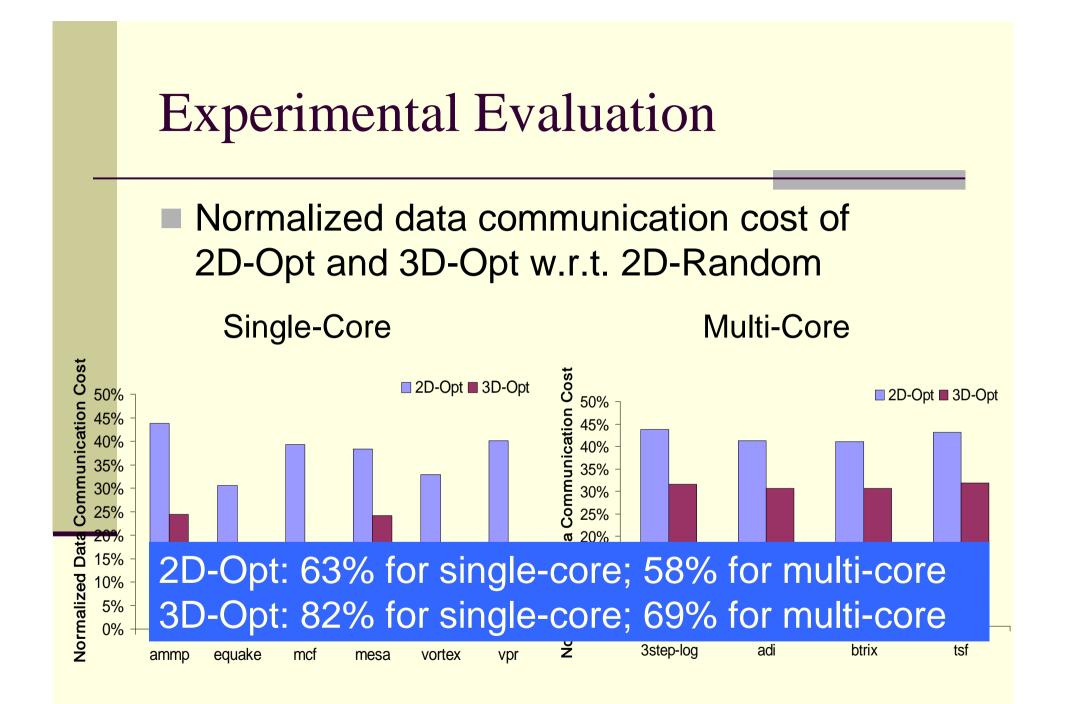

min
$$(\alpha \times (X_{Cost} + Y_{Cost}) + \beta \times Z_{Cost}).$$

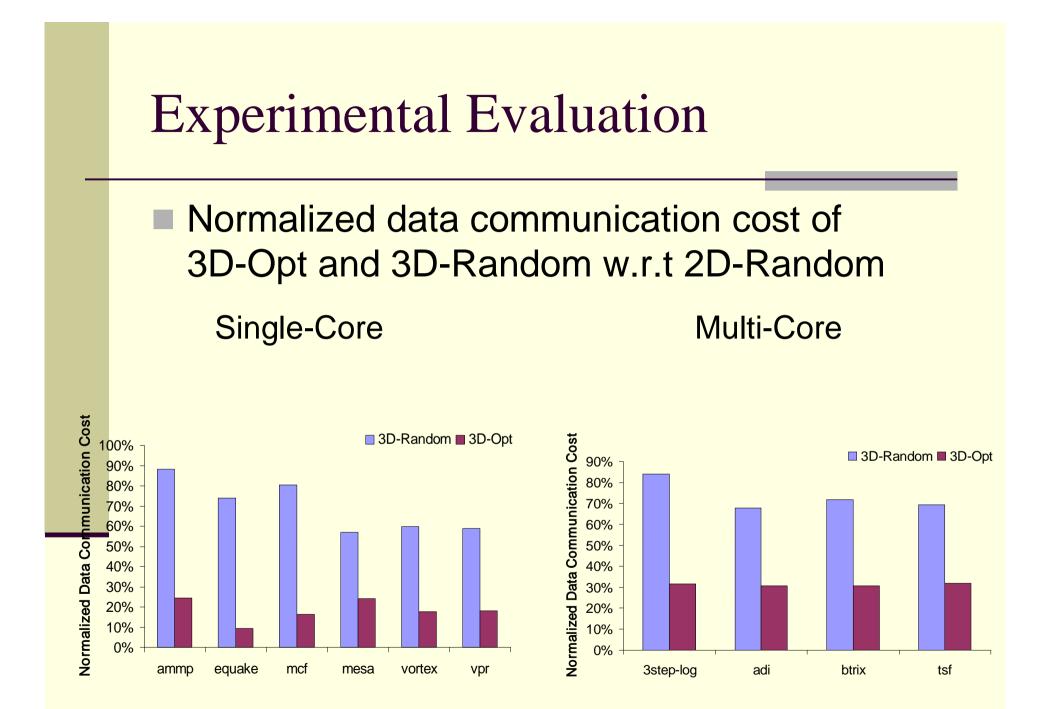
An Example

4 processors and 20 storage blocks

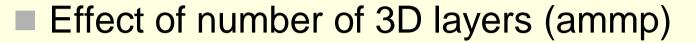
Pro	cesso r	B1	B2	В3	B4	B5	B6	B7	B8	В9	B10
	1	0.20%	0.18%	61.76%	0.19%	0.17%	0.20%	3.48%	2.86%	0.20%	0.20%
	2	0.20%	0.19%	61.86%	0.19%	0.22%	4.07%	2.30%	0.18%	0.19%	0.18%
	3	0.18%	0.18%	61.83%	0.18%	0.18%	4.05%	2.34%	0.19%	0.21%	0.19%
	4	0.18%	0.22%	61.76%	0.19%	0.18%	4.05%	2.32%	0.18%	0.20%	0.18%
Pro	cesso r	B11	B12	B13	B14	B15	B16	B17	B18	B19	B20
	1	22.83%	0.22%	0.20%	0.18%	0.20%	0.19%	0.18%	0.19%	1.83%	4.55%
	2	22.64%	0.20%	0.18%	0.18%	0.17%	0.19%	0.18%	1.91%	4.49%	0.28%
	3	22.65%	0.20%	0.20%	0.22%	0.19%	0.20%	0.18%	1.89%	4.47%	0.29%
	4	22.59%	0.17%	0.18%	0.18%	0.19%	0.21%	0.18%	1.89%	4.49%	0.31%

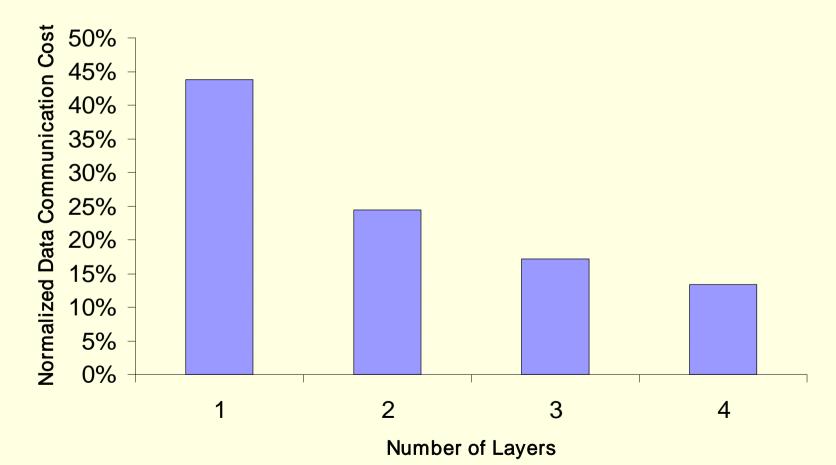
An Example

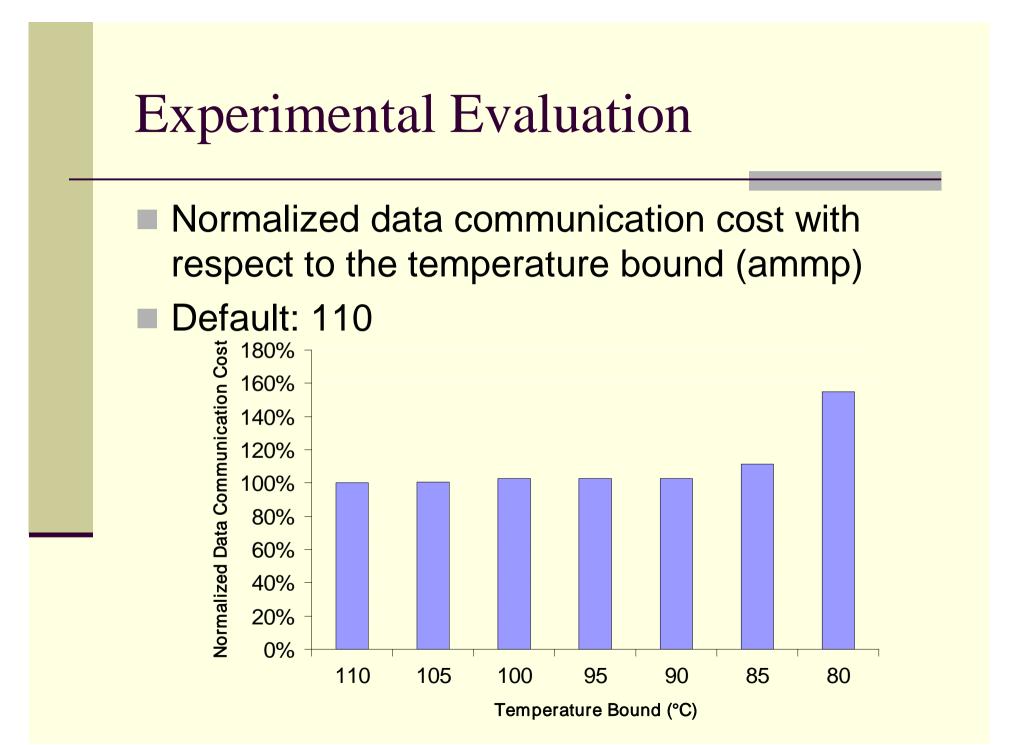

Experimental Parameters


Parameter	Value
Number of processor cores	4
(in multi-core designs)	
Number of blocks	24
Number of layers	2
$\frac{\alpha}{\beta}$	10
Total storage capacity	128KB
Set associativity	2 way
Line size	32 Bytes
Number of lines per block	90
Temperature bound	110°C

Benchmarks


Benchmark Name	Source	Description	Number of Data Accesses	
ammp	Spec	Computational Chemistry	86967895	
equake	Spec	Seismic Wave Propagation Simulation	83758249	
mcf	Spec	Combinatorial Optimization	114662229	
mesa	Spec	3-D Graphics Library	134791940	
vortex	Spec	Object-oriented Database	163495955	
vpr	Spec	FPGA Circuit Placement and Routing	117239027	


Benchmark Name	Source	Description	Number of Data Accesses
3step-log	DSPstone	Motion Estimation	90646252
adi	Livermore	Alternate Direction Integration	71021085
btrix	Spec	Block Tridiagonal Matrix Solution	50055611
tsf	Perfect Club	Nearest Neighbor Computation	54917732



Experimental Evaluation

Conclusion

- Shrinking process technology and increasing data communication requirements of embedded applications
 - An increasing bottleneck: On-chip interconnects
 - Solution to the global interconnect problem: 3D designs
- Our goal: application-specific placement of processor cores and storage blocks in a customized 3D design
- Formulated using ILP
- Experiments with single-core and multi-core
 - Optimal placement of storage blocks and processor cores is very important in 3D design

Thanks