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I. Operator Splitting- A Simple Example
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t

where L is a linear/nonlinear operator and can be written as a 
linear sum of m subfunctions of u

Initial value problem (IVP) of ordinary differential equation (ODE)
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Suppose             are updating operators on u from time step n
to n+1 for each of the subfunctions, the operator splitting 
method has the form of:
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I. Previous work on Operator Splitting
First used to solve PDE equation
Previous Work

Namiki and Ito (IEEE Tran. Microwave Theory 
and Technology 1999)

adopted its special form, the alternating 
direction implicit (ADI) to simulate a 2D EM 
wave. Unconditional Stable. 

Zheng (IEEE Tran. Microwave Theory and 
Technology 2001) 

extend to 3D problem
Chen (ICCAD 2001, DATE 2003)

2D-ADI, 3D-ADI for power network analysis 

Limitation
Split along geometric direction.
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I. Operator Splitting on Circuit Simulation

We generalize the operator splitting 
to graph based modeling  
No geometry or locality constrains
Convergence

A-stable: independent of time step size
Consistence : local truncation error



February 1, 2006 6

II. Formulation - Forward Euler
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Forward Euler Formulation

where : capactiance matrix    : inductance matrix
: resistance matrix     : conductance matrix
: incidence matrix      : time step
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Circuit Equation for RLC circuits:
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II. Formulation – Backward Euler
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Backward Euler Formulation

where : capactiance matrix    : inductance matrix
: resistance matrix     : conductance matrix
: incidence matrix      : time step

C L
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Circuit Equation for RLC circuits:
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II. Splitting Formulation

Split the circuit resistor branches into two partitions, 
we have

1 2

1 2

1 2

A A A
G G G
R R R

Each partition has a full-version of capacitors and inductors.
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II. Splitting Formulation
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General Operator Splitting Iteration:

Alternate Backward and forward integration on partitions
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III. Convergence Study

One step errors are small (consistency)

The single step errors do not grow too 
quickly (stability)

Alternate Backward and forward integration on partitions

A numerical integration method

Two conditions for convergence

Local Condition

Global Condition

General Operator Splitting
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III. Stability Analysis

Theorem: The operator splitting approach is stable 
independent of time step h

A Stable

How to prove?

Derive iterative matrix, and prove its maximum 
eigenvalue no larger than 1
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III. Stability Analysis- Iterative Matrix
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The operator splitting approach can be simplified as:

Actually an iterative update on X:
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III. Stability Analysis-2

1 1
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The operator splitting approach converges if the maximum 
Eigenvalue of  the iterative matrix no larger than 1 
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If we can prove          ,   then   ( ) 11

We pick the norm:  

Where S is a positive definite matrix  
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IV. Partitioning
Objective

Minimize the overall nonzero fill-ins
Guarantee DC path for every nodes
Hint:

Tree structure generate no nonzero fill-ins in LU 
factorization. 
High Degree nodes generates more nonzero fill-ins 
during LU factorization

Linear Circuits (talk about circuits with transistors 
later)

Bipartition of neighbors for each node
Basic idea

In the LU decomposition process, non-zero fill-in will be 
introduced among neighbors of the pivot. Reduce the 
number of neighbors for all nodes will be beneficial to 
decrease the number of non-zero fill-ins.
Avoid loop, make tree structure as much as possible

Check DC path, reassign partition if necessary



February 1, 2006 15

IV. Partitioning -Nonlinear circuits

Duplicate transistors into both partition
Taking into account the nonlinearity of transistor 
gates 

Regard each gate as super node 
apply the splitting algorithm on super node 
structure

Super Node in LU decomposition
During factorization, eliminate the internal nodes 
of each super node first
Nonzero fill-ins are confined inside the gate, 
reduce the number of unnecessary nonzero fill-
ins.
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IV. Partitioning Algorithm
Objective:

Split the circuit into two partitions
Minimize the total number of non-zero fill-
ins for the matrix decomposition in circuit 
simulation

Basic idea:
Split the circuits into two partitions with 
structures close to tree or forest
Decrease the degree of all the nodes in 
two partitions
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IV. Undirected graph representation
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IV. Partitioning Algorithm

Start from VDD/GND nodes

Divide the edges of each node into 
two partitions according to rules

Post processing to guarantee DC path

Output two sub-graphs

BFS search



February 1, 2006 19

IV. Partitioning Algorithm
Branch rule: the edges in one branch belong to 
the same partition. If one branch is broken into 
two partitions, the broken branch node will result 
in much iteration for simulation. 
Degree rule: the edges of node whose degree is 
two belong to the same partition. The line 
structure wouldn’t cause many non-zero fill-ins 
and it will be propitious to provide DC path in the 
sub-graphs.
Loop rule: the loop will be avoided in each sub-
graph if possible. Edges loop in the sub-graphs 
will potentially introduce certain number of non-
zero fill-ins. 
Balance rule: the edges for each node in the 
graph will be divided into two sub-graphs evenly. 
Thus each sub-graph will be much simpler than 
the original graph. 
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IV. # of nonzero fill-ins
Test Case:
A small ASIC Design 

Spice matrix : 
Dimension: 10,286
The number of non-zero elements: 46,655
The number of non-zero fill-ins: 90,960

12,65810,04042,0202,61838,572Operator 
Splitting

# non-zero 
fill-ins

# non-zero 
elements

Sub-matrix2

# non-zero 
fill-ins

# non-
zero 

elements

Total # 
non-zero 

fill-ins

Sub-matrix1
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V. Experimental Results-1

Power Network 
& Gate Sinks 

N/A58.2x27.1x8.1xSpeedup

1356.21681.18305.3874.64Operator 
Splitting

N/A39612.328268.92602.44SPICE3(sec)

10ns10ns10ns10nsSimulation 
Per iod

2,1301,10851374# Transistors

160,65792,36041,32111,203# Nodes

Circuit4Circuit3Circuit2Circuit1Examples

Voltage Drop of Circuit3
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V. Experimental Results-2
RLC Power/Clock network case. 

29110 nodes, 720 transistor devices
Spice3 Runtime: 12015 sec.
Our Run time: 649.5 sec. 18.5x 
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V. Experimental Result-3
Two 1K and 10K cell designs

11.2x3954.7(s)4429369,000123,60010k Cell

5.1x415.9(s)2121 6,50010,2001k Cell

SpeedupOur 
runtime (s)

Spice3 
runtime(s)

# of 
transistor

# of 
Nodes

Bottle neck:
Nonzero fill-ins
Device Evaluation Time
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V. Large Power Ground Network
600,000 nodes
Irregular RC network 
10ns Transient Simulation: 4083sec
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VI. Conclusion
Moore’s Law demands an extraordinary fast 
circuit simulator with guaranteed accuracy.
Accuracy

No trade off for speedup
Rigorous convergence check 
Spice Level Accuracy

Performance
Orders of magnitude speedup over SPICE
The larger the linear network, the higher the speedup

Expandable
Possible to combine with some other techniques

Parasitic reduction
Fast device evaluation
Simplified linearization process


