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I. Operator Splitting- A Simple Example
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where L is a linear/nonlinear operator and can be written as a 
linear sum of m subfunctions of u

Initial value problem (IVP) of ordinary differential equation (ODE)
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Suppose             are updating operators on u from time step n
to n+1 for each of the subfunctions, the operator splitting 
method has the form of:
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I. Previous work on Operator Splitting
� First used to solve PDE equation
� Previous Work
� Namiki and Ito (IEEE Tran. Microwave Theory 

and Technology 1999)
� adopted its special form, the alternating 

direction implicit (ADI) to simulate a 2D EM 
wave. Unconditional Stable. 

� Zheng (IEEE Tran. Microwave Theory and 
Technology 2001) 
� extend to 3D problem

� Chen (ICCAD 2001, DATE 2003)
� 2D-ADI, 3D-ADI for power network analysis 

� Limitation
� Split along geometric direction.
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I. Operator Splitting on Circuit Simulation

� We generalize the operator splitting 
to graph based modeling  

� No geometry or locality constrains
� Convergence
� A-stable: independent of time step size
� Consistence : local truncation error
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II. Formulation - Forward Euler
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Forward Euler Formulation

where : capactiance matrix    : inductance matrix
: resistance matrix     : conductance matrix
: incidence matrix      : time step

C L
R G
A h

Circuit Equation for RLC circuits:
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II. Formulation – Backward Euler
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Backward Euler Formulation

where : capactiance matrix    : inductance matrix
: resistance matrix     : conductance matrix
: incidence matrix      : time step

C L
R G
A h

Circuit Equation for RLC circuits:
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II. Splitting Formulation

Split the circuit resistor branches into two partitions, 
we have

1 2

1 2

1 2

A A A
G G G
R R R

 �
 �
 �

Each partition has a full-version of capacitors and inductors.
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II. Splitting Formulation
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General Operator Splitting Iteration:

Alternate Backward and forward integration on partitions
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III. Convergence Study

One step errors are small (consistency)

The single step errors do not grow too 
quickly (stability)

Alternate Backward and forward integration on partitions

A numerical integration method

Two conditions for convergence

Local Condition

Global Condition

General Operator Splitting
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III. Stability Analysis

Theorem: The operator splitting approach is stable 
independent of time step h

A Stable

How to prove?

Derive iterative matrix, and prove its maximum 
eigenvalue no larger than 1
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III. Stability Analysis- Iterative Matrix
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The operator splitting approach can be simplified as:

Actually an iterative update on X:
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III. Stability Analysis-2
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The operator splitting approach converges if the maximum 
Eigenvalue of  the iterative matrix no larger than 1 
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We pick the norm:  

Where S is a positive definite matrix  
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IV. Partitioning
� Objective
� Minimize the overall nonzero fill-ins
� Guarantee DC path for every nodes
� Hint:
� Tree structure generate no nonzero fill-ins in LU 

factorization. 
� High Degree nodes generates more nonzero fill-ins 

during LU factorization

� Linear Circuits (talk about circuits with transistors 
later)
� Bipartition of neighbors for each node
� Basic idea
� In the LU decomposition process, non-zero fill-in will be 

introduced among neighbors of the pivot. Reduce the 
number of neighbors for all nodes will be beneficial to 
decrease the number of non-zero fill-ins.

� Avoid loop, make tree structure as much as possible
� Check DC path, reassign partition if necessary
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IV. Partitioning -Nonlinear circuits

� Duplicate transistors into both partition
� Taking into account the nonlinearity of transistor 

gates 

� Regard each gate as super node 
� apply the splitting algorithm on super node 

structure

� Super Node in LU decomposition
� During factorization, eliminate the internal nodes 

of each super node first
� Nonzero fill-ins are confined inside the gate, 

reduce the number of unnecessary nonzero fill-
ins.
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IV. Partitioning Algorithm
�Objective:
� Split the circuit into two partitions
�Minimize the total number of non-zero fill-

ins for the matrix decomposition in circuit 
simulation

�Basic idea:
� Split the circuits into two partitions with 

structures close to tree or forest
� Decrease the degree of all the nodes in 

two partitions
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IV. Undirected graph representation
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IV. Partitioning Algorithm

Start from VDD/GND nodes

Divide the edges of each node into 
two partitions according to rules

Post processing to guarantee DC path

Output two sub-graphs

BFS search
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IV. Partitioning Algorithm
� Branch rule: the edges in one branch belong to 

the same partition. If one branch is broken into 
two partitions, the broken branch node will result 
in much iteration for simulation. 

� Degree rule: the edges of node whose degree is 
two belong to the same partition. The line 
structure wouldn’t cause many non-zero fill-ins 
and it will be propitious to provide DC path in the 
sub-graphs.

� Loop rule: the loop will be avoided in each sub-
graph if possible. Edges loop in the sub-graphs 
will potentially introduce certain number of non-
zero fill-ins. 

� Balance rule: the edges for each node in the 
graph will be divided into two sub-graphs evenly. 
Thus each sub-graph will be much simpler than 
the original graph. 
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IV. # of nonzero fill-ins
Test Case:
A small ASIC Design 

Spice matrix : 
Dimension: 10,286
The number of non-zero elements: 46,655
The number of non-zero fill-ins: 90,960

12,65810,04042,0202,61838,572Operator 
Splitting

# non-zero 
fill-ins

# non-zero 
elements

Sub-matrix2

# non-zero 
fill-ins

# non-
zero 

elements

Total # 
non-zero 

fill-ins

Sub-matrix1
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V. Experimental Results-1

Power Network 
& Gate Sinks 

N/A58.2x27.1x8.1xSpeedup

1356.21681.18305.3874.64Operator 
Splitting

N/A39612.328268.92602.44SPICE3(sec)

10ns10ns10ns10nsSimulation 
Per iod

2,1301,10851374# Transistors

160,65792,36041,32111,203# Nodes

Circuit4Circuit3Circuit2Circuit1Examples

Voltage Drop of Circuit3
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V. Experimental Results-2
� RLC Power/Clock network case. 

� 29110 nodes, 720 transistor devices
� Spice3 Runtime: 12015 sec.
� Our Run time: 649.5 sec. 18.5x 
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V. Experimental Result-3
Two 1K and 10K cell designs

11.2x3954.7(s)4429369,000123,60010k Cell

5.1x415.9(s)2121 6,50010,2001k Cell

SpeedupOur 
runtime (s)

Spice3 
runtime(s)

# of 
transistor

# of 
Nodes

Bottle neck:
Nonzero fill-ins
Device Evaluation Time
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V. Large Power Ground Network
� 600,000 nodes
� Irregular RC network 
� 10ns Transient Simulation: 4083sec
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VI. Conclusion
� Moore’s Law demands an extraordinary fast 

circuit simulator with guaranteed accuracy.
� Accuracy
� No trade off for speedup
� Rigorous convergence check 
� Spice Level Accuracy

� Performance
� Orders of magnitude speedup over SPICE
� The larger the linear network, the higher the speedup

� Expandable
� Possible to combine with some other techniques
� Parasitic reduction
� Fast device evaluation
� Simplified linearization process


