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. Operator Splitting- A Simple Example

Initial value problem (IVP) of ordinary differential equation (ODE)

ou

—=Lu

ot
where L is a linear/nonlinear operator and can be written as a
linear sum of m subfunctions of u

Lu=Lu+Lu+---+L.U

Suppose u,u,, U, are updating operators on u from time step n

to n+1 for each of the subfunctions, the operator splitting
method has the form of:

un+(l/m) _ Ul(un’ h/ m)

Un+l Ny (Un, h) : un+(2/m) _ Uz(un+(1/m) ’ h/ m)

un+l _ Um(un+(m_l)/m, h/ m)
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|. Previous work on Operator Splitting

First used to solve PDE equation

Previous Work

B Namiki and Ito (IEEE Tran. Microwave Theory
and Technology 1999)

[0 adopted its special form, the alternating
direction implicit (ADI) to simulate a 2D EM
wave. Unconditional Stable.

B Zheng (IEEE Tran. Microwave Theory and
Technology 2001)

[0 extend to 3D problem

B Chen (ICCAD 2001, DATE 2003)
0 2D-ADI, 3D-ADI for power network analysis

Limitation
B Split along geometric direction.
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. Operator Splitting on Circuit Simulation

We generalize the operator splitting
to graph based modeling

No geometry or locality constrains
convergence

B A-stable: independent of time step size
B Consistence : local truncation error
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1l. Formulation - Forward Euler

Circuit Equation for RLC circuits:

N r=lo

Forward Euler Formulation v ¢, hy v (1) <V (t)h, 1 (t+ h) = 1 (t) + | (t)h
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b O ven). R e A VLo
0 L+ _A L_R (t)
. h. i h _
where C: capactiance matrix L: inductance matrix

R: resistance matrix  G: conductance matrix
A Incidence matrix  h: time step
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Il. Formulation — Backward Euler

Circuit Equation for RLC circuits:

A

C 0
I A R
Backward Euler Formulation v ny=v)+V(t+hh,1t+h)= 1)+ t+hh

O L

C C
PTG A va+hy] | O v
— 1 +U (t+ h)
A Loglitsh ] |4 L0
i h _ . h_
where C: capactiance matrix  L: inductance matrix

R: resistance matrix  G: conductance matrix
A Incidence matrix  h: time step
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1. Splitting Formulation

Split the circuit resistor branches into two partitions,
we have

Each partition has a full-version of capacitors and inductors.
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1. Splitting Formulation

General Operator Splitting lteration:

%ml A’ {V(t#z‘)} € 5 A {V(t)

=| h 2L
| (t+3)

2L I(t)}umg)
A ho

.5 A {V(t+h)} € 5 A {V(t#z‘)

trhy || " 2L |(t+g)}+u(t+h)

Alternate Backward and forward integration on partitions
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I11. Convergence Study

[ General Operator Splitting }

A numerical integration method
Alternate Backward and forward integration on partitions

[ Two conditions for convergence }

Global Condition The single step errors do not grow too
quickly (stability)

Local Condition One step errors are small (consistency)
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I11. Stability Analysis

[ A Stable }

Theorem: The operator splitting approach is stable
iIndependent of time step h

How to prove?

Derive iterative matrix, and prove its maximum
eigenvalue no larger than 1
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[11. Stability Analysis- Iterative Matrix

) = [ec o
LetPl:{Gl A }’PZZ{GZ A },Sz h 2L ,andxz{v}
A R A R |

A=A+A G=G +G, R=R+R,

The operator splitting approach can be simplified as:

(R+3)X(t+3)=—(R, -9 X(t)+U(t+3)
{(PZ+S)X(t+h) =—(R-9)X(t+2)+U(t+h)

Actually an iterative update on X:
Ky = AR
A=(R+9) (R-9(R+9)(R-9S)
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I11. Stability Analysis-2

The operator splitting approach converges if the maximum
Eigenvalue of the iterative matrix no larger than 1

p(A) <=1

A=(R+S)(R-S)(R+S)"(R,-9S)

If we can prove |A|<=1, then p(A)<=1

= (XT S—1X)1/2

Where S is a positive definite matrix

We pick the norm: HX

5
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V. Partitioning

[1 Objective
® Minimize the overall nonzero fill-ins
B Guarantee DC path for every nodes
B Hint:

[0 Tree structure generate no nonzero fill-ins in LU
factorization.

[0 High Degree nodes generates more nonzero fill-ins
during LU factorization

[1 Linear Circuits (talk about circuits with transistors
later)
B Bipartition of neighbors for each node
B Basic idea

[0 In the LU decomposition process, non-zero fill-in will be
introduced among neighbors of the pivot. Reduce the
number of neighbors for all nodes will be beneficial to
decrease the number of non-zero fill-ins.

[0 Avoid loop, make tree structure as much as possible
B Check DC path, reassign partition if necessary
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V. Partitioning -Nonlinear circuits

Duplicate transistors into both partition

B Taking into account the nonlinearity of transistor
gates

Regard each gate as super node

B apply the splitting algorithm on super node
structure

Super Node In LU decomposition

B During factorization, eliminate the internal nodes
of each super node first

B Nonzero fill-ins are confined inside the gate,
reduce the number of unnecessary nonzero fill-
INS.
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V. Partitioning Algorithm

Objective:
B Split the circuit into two partitions

H Minimize the total number of non-zero fill-
INs for the matrix decomposition in circuit
simulation

Basic i1dea:

B Split the circuits into two partitions with
structures close to tree or forest

B Decrease the degree of all the nodes In
two partitions

February 1, 2006 16



V. Undirected graph representation
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V. Partitioning Algorithm

[ Start from VDD/GND nodes }

BFS search }—»

A

Divide the edges of each node into
two partitions according to rules

y

[ Post processing to guarantee DC path }

y

[ Output two sub-graphs }
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V. Partitioning Algorithm

[1 Branch rule: the edges in one branch belong to

L

the same partition. If one branch is broken into
two partitions, the broken branch node will result
In much iteration for simulation.

Degree rule: the edges of node whose degree is
two belong to the same partition. The line
structure wouldn’t cause many non-zero fill-ins
and it will be propitious to provide DC path in the
sub-graphs.

Loop rule: the loop will be avoided in each sub-
graph if possible. Edges loop in the sub-graphs
will potentially introduce certain number of non-
zero fill-ins.

Balance rule: the edges for each node in the
graph will be divided into two sub-graphs evenly.

— Thus each sub-graph will be much simpler than
feorngé B¥ginal graph. *°



1V. # of nonzero fill-ins

Test Case:

A small ASIC Design

Spice matrix :
Dimension: 10,286

The number of non-zero elements: 46,655

The number of non-zero fill-ins: 90,960

Sub-matrix1 Sub-matrix2 Total #
# non- # non-zero | # non-zero | # non-zero n?ﬂ—;ero
Zero fill-ins elements fill-ins 1H=Ins
elements
Operator 38,572 2,618 42,020 10,040 12,658
Splitting
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Voltage (V)

V. Experimental Results-1

Examples Circuitl Circuit2 Circuit3 Circuit4
Power Network # Nodes 11,203 41,321 92,360 160,657
: #Transstors 74 513 1,108 2,130
& Gate Sinks
Simulation 10ns 10ns 10ns 10ns
Period
SPICE3(sec) 602.44 8268.92 39612.32 N/A
Operator 74.64 305.38 681.18 1356.21
Splitting
Speedup 8.1x 27.1x 58.2X N/A
1
| | Berkele ISpic;c?’
0.995 - Operator Splitting — — -
0.99
0.985
098
0.975 _ _
07 | Voltage Drop of Circuit3
0.965
0.96 -
0.955
0.95 : : : :
0 2e-09 4e-09 6e-09 8e-09 1e-08
Time (sec)
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V. Experimental Results-2

[0 RLC Power/Clock network case.
B 29110 nodes, 720 transistor devices
B Spice3 Runtime: 12015 sec.
B Our Run time: 649.5 sec. 18.5x

1.8005 | I

|
Berkeleg Slpic_e3
18 Operator Splitting — — -
. T T
/ (’ | /r
1.7995 7/ |
g 1.799
% I
E 1.7985 |-
>
1.798
1.7975 -
1.797 -
1.7965 ' : :
0 0.5 1 1.5

Time ( 1e-8sec)
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V. Experimental Result-3

Two 1K and 10K cell designs

1
0.8
Bottle neck: s
Nonzero fill-ins %ﬁ o4
Device Evaluation Time 3
0.2
08
02 | | |
"0 5e-09 le-08 1.5e-08
Time (sec)
# of # of Spice3 Our Speedup
Nodes transistor runtime(s) | runtime (s)
1k Cell 10,200 6,500 2121 415.9(s) 5.1x
10k Cell 123,600 69,000 44293 3954.7(s) 11.2x
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V. Large Power Ground Network

O 600,000 nodes
1 Irregular RC network
[0 10ns Transient Simulation: 4083sec

1.61

16 -

1.58

158

Voltage (V)

157 -

1.56

1.55

1 1 1 1
0 2e-09 4e-09 6e-09 8e-09 1e-08
Time (sec)
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V1. Conclusion

[0 Moore’s Law demands an extraordinary fast
circuit simulator with guaranteed accuracy.

Accuracy

B No trade off for speedup
B Rigorous convergence check
B Spice Level Accuracy

Performance

B Orders of magnitude speedup over SPICE
B The larger the linear network, the higher the speedup

Expandable

B Possible to combine with some other techniques
[0 Parasitic reduction
[0 Fast device evaluation
O Simplified linearization process
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